Cargando…
DeepMalaria: Artificial Intelligence Driven Discovery of Potent Antiplasmodials
Antimalarial drugs are becoming less effective due to the emergence of drug resistance. Resistance has been reported for all available malaria drugs, including artemisinin, thus creating a perpetual need for alternative drug candidates. The traditional drug discovery approach of high throughput scre...
Autores principales: | Keshavarzi Arshadi, Arash, Salem, Milad, Collins, Jennifer, Yuan, Jiann Shiun, Chakrabarti, Debopam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974622/ https://www.ncbi.nlm.nih.gov/pubmed/32009951 http://dx.doi.org/10.3389/fphar.2019.01526 |
Ejemplares similares
-
Artificial Intelligence for COVID-19 Drug Discovery and Vaccine Development
por: Keshavarzi Arshadi, Arash, et al.
Publicado: (2020) -
AMPDeep: hemolytic activity prediction of antimicrobial peptides using transfer learning
por: Salem, Milad, et al.
Publicado: (2022) -
MolData, a molecular benchmark for disease and target based machine learning
por: Keshavarzi Arshadi, Arash, et al.
Publicado: (2022) -
Antiplasmodial Compounds from Deep-Water Marine Invertebrates
por: Wright, Amy E., et al.
Publicado: (2021) -
Identification of Bis-Cyclic Guanidines as Antiplasmodial Compounds from Positional Scanning Mixture-Based Libraries
por: Perry, David L., et al.
Publicado: (2019)