Cargando…

Highly efficient induced pluripotent stem cell reprogramming of cryopreserved lymphoblastoid cell lines

Tissue culture based in-vitro experimental modeling of human inherited disorders provides insight into the cellular and molecular mechanisms involved and the underlying genetic component influencing the disease phenotype. The breakthrough development of induced pluripotent stem cell (iPSC) technolog...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Satish, Curran, Joanne E., Espinosa, Erika C., Glahn, David C., Blangero, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Journal of Biological Methods 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974695/
https://www.ncbi.nlm.nih.gov/pubmed/31976351
http://dx.doi.org/10.14440/jbm.2020.296
_version_ 1783490147586670592
author Kumar, Satish
Curran, Joanne E.
Espinosa, Erika C.
Glahn, David C.
Blangero, John
author_facet Kumar, Satish
Curran, Joanne E.
Espinosa, Erika C.
Glahn, David C.
Blangero, John
author_sort Kumar, Satish
collection PubMed
description Tissue culture based in-vitro experimental modeling of human inherited disorders provides insight into the cellular and molecular mechanisms involved and the underlying genetic component influencing the disease phenotype. The breakthrough development of induced pluripotent stem cell (iPSC) technology represents a quantum leap in experimental modeling of human diseases, providing investigators with a self-renewing and thus unlimited source of pluripotent cells for targeted differentiation into functionally relevant disease specific tissue/cell types. The existing rich bio-resource of Epstein-Barr virus (EBV) immortalized lymphoblastoid cell line (LCL) repositories generated from a wide array of patients in genetic and epidemiological studies worldwide, many of them with extensive genotypic, genomic and phenotypic data already existing, provides a great opportunity to reprogram iPSCs from any of these LCL donors in the context of their own genetic identity for disease modeling and disease gene identification. However, due to the low reprogramming efficiency and poor success rate of LCL to iPSC reprogramming, these LCL resources remain severely underused for this purpose. Here, we detailed step-by-step instructions to perform our highly efficient LCL-to-iPSC reprogramming protocol using EBNA1/OriP episomal plasmids encoding pluripotency transcription factors (i.e., OCT3/4, SOX2, KLF4, L-MYC, and LIN28), mouse p53DD (p53 carboxy-terminal dominant-negative fragment) and commercially available reprogramming media. We achieved a consistently high reprogramming efficiency and 100% success rate (> 200 reprogrammed iPSC lines) using this protocol.
format Online
Article
Text
id pubmed-6974695
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Journal of Biological Methods
record_format MEDLINE/PubMed
spelling pubmed-69746952020-01-23 Highly efficient induced pluripotent stem cell reprogramming of cryopreserved lymphoblastoid cell lines Kumar, Satish Curran, Joanne E. Espinosa, Erika C. Glahn, David C. Blangero, John J Biol Methods Protocol Tissue culture based in-vitro experimental modeling of human inherited disorders provides insight into the cellular and molecular mechanisms involved and the underlying genetic component influencing the disease phenotype. The breakthrough development of induced pluripotent stem cell (iPSC) technology represents a quantum leap in experimental modeling of human diseases, providing investigators with a self-renewing and thus unlimited source of pluripotent cells for targeted differentiation into functionally relevant disease specific tissue/cell types. The existing rich bio-resource of Epstein-Barr virus (EBV) immortalized lymphoblastoid cell line (LCL) repositories generated from a wide array of patients in genetic and epidemiological studies worldwide, many of them with extensive genotypic, genomic and phenotypic data already existing, provides a great opportunity to reprogram iPSCs from any of these LCL donors in the context of their own genetic identity for disease modeling and disease gene identification. However, due to the low reprogramming efficiency and poor success rate of LCL to iPSC reprogramming, these LCL resources remain severely underused for this purpose. Here, we detailed step-by-step instructions to perform our highly efficient LCL-to-iPSC reprogramming protocol using EBNA1/OriP episomal plasmids encoding pluripotency transcription factors (i.e., OCT3/4, SOX2, KLF4, L-MYC, and LIN28), mouse p53DD (p53 carboxy-terminal dominant-negative fragment) and commercially available reprogramming media. We achieved a consistently high reprogramming efficiency and 100% success rate (> 200 reprogrammed iPSC lines) using this protocol. Journal of Biological Methods 2020-01-08 /pmc/articles/PMC6974695/ /pubmed/31976351 http://dx.doi.org/10.14440/jbm.2020.296 Text en © 2013-2020 The Journal of Biological Methods, All rights reserved. http://creativecommons.org/licenses/by-nc-sa/4.0 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License: http://creativecommons.org/licenses/by-nc-sa/4.0
spellingShingle Protocol
Kumar, Satish
Curran, Joanne E.
Espinosa, Erika C.
Glahn, David C.
Blangero, John
Highly efficient induced pluripotent stem cell reprogramming of cryopreserved lymphoblastoid cell lines
title Highly efficient induced pluripotent stem cell reprogramming of cryopreserved lymphoblastoid cell lines
title_full Highly efficient induced pluripotent stem cell reprogramming of cryopreserved lymphoblastoid cell lines
title_fullStr Highly efficient induced pluripotent stem cell reprogramming of cryopreserved lymphoblastoid cell lines
title_full_unstemmed Highly efficient induced pluripotent stem cell reprogramming of cryopreserved lymphoblastoid cell lines
title_short Highly efficient induced pluripotent stem cell reprogramming of cryopreserved lymphoblastoid cell lines
title_sort highly efficient induced pluripotent stem cell reprogramming of cryopreserved lymphoblastoid cell lines
topic Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974695/
https://www.ncbi.nlm.nih.gov/pubmed/31976351
http://dx.doi.org/10.14440/jbm.2020.296
work_keys_str_mv AT kumarsatish highlyefficientinducedpluripotentstemcellreprogrammingofcryopreservedlymphoblastoidcelllines
AT curranjoannee highlyefficientinducedpluripotentstemcellreprogrammingofcryopreservedlymphoblastoidcelllines
AT espinosaerikac highlyefficientinducedpluripotentstemcellreprogrammingofcryopreservedlymphoblastoidcelllines
AT glahndavidc highlyefficientinducedpluripotentstemcellreprogrammingofcryopreservedlymphoblastoidcelllines
AT blangerojohn highlyefficientinducedpluripotentstemcellreprogrammingofcryopreservedlymphoblastoidcelllines