Cargando…
Nanoscale x-ray holotomography of human brain tissue with phase retrieval based on multienergy recordings
X-ray cone-beam holotomography of unstained tissue from the human central nervous system reveals details down to subcellular length scales. This visualization of variations in the electron density of the sample is based on phase-contrast techniques using intensities formed by self-interference of th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6975131/ https://www.ncbi.nlm.nih.gov/pubmed/32016134 http://dx.doi.org/10.1117/1.JMI.7.1.013501 |
_version_ | 1783490236759670784 |
---|---|
author | Robisch, Anna-Lena Eckermann, Marina Töpperwien, Mareike van der Meer, Franziska Stadelmann, Christine Salditt, Tim |
author_facet | Robisch, Anna-Lena Eckermann, Marina Töpperwien, Mareike van der Meer, Franziska Stadelmann, Christine Salditt, Tim |
author_sort | Robisch, Anna-Lena |
collection | PubMed |
description | X-ray cone-beam holotomography of unstained tissue from the human central nervous system reveals details down to subcellular length scales. This visualization of variations in the electron density of the sample is based on phase-contrast techniques using intensities formed by self-interference of the beam between object and detector. Phase retrieval inverts diffraction and overcomes the phase problem by constraints such as several measurements at different Fresnel numbers for a single projection. Therefore, the object-to-detector distance (defocus) can be varied. However, for cone-beam geometry, changing defocus changes magnification, which can be problematic in view of image processing and resolution. Alternatively, the photon energy can be altered (multi-E). Far from absorption edges, multi-E data yield the wavelength-independent electron density. We present the multi-E holotomography at the Göttingen Instrument for Nano-Imaging with X-Rays (GINIX) setup of the P10 beamline at Deutsches Elektronen-Synchrotron. The instrument is based on a combined optics of elliptical mirrors and an x-ray waveguide positioned in the focal plane for further coherence, spatial filtering, and high numerical aperture. Previous results showed the suitability of this instrument for nanoscale tomography of unstained brain tissue. We demonstrate that upon energy variation, the focal spot is stable enough for imaging. To this end, a double-crystal monochromator and automated alignment routines are required. Three tomograms of human brain tissue were recorded and jointly analyzed using phase retrieval based on the contrast transfer function formalism generalized to multiple photon energies. Variations of the electron density of the sample are successfully reconstructed. |
format | Online Article Text |
id | pubmed-6975131 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Society of Photo-Optical Instrumentation Engineers |
record_format | MEDLINE/PubMed |
spelling | pubmed-69751312021-01-22 Nanoscale x-ray holotomography of human brain tissue with phase retrieval based on multienergy recordings Robisch, Anna-Lena Eckermann, Marina Töpperwien, Mareike van der Meer, Franziska Stadelmann, Christine Salditt, Tim J Med Imaging (Bellingham) Physics of Medical Imaging X-ray cone-beam holotomography of unstained tissue from the human central nervous system reveals details down to subcellular length scales. This visualization of variations in the electron density of the sample is based on phase-contrast techniques using intensities formed by self-interference of the beam between object and detector. Phase retrieval inverts diffraction and overcomes the phase problem by constraints such as several measurements at different Fresnel numbers for a single projection. Therefore, the object-to-detector distance (defocus) can be varied. However, for cone-beam geometry, changing defocus changes magnification, which can be problematic in view of image processing and resolution. Alternatively, the photon energy can be altered (multi-E). Far from absorption edges, multi-E data yield the wavelength-independent electron density. We present the multi-E holotomography at the Göttingen Instrument for Nano-Imaging with X-Rays (GINIX) setup of the P10 beamline at Deutsches Elektronen-Synchrotron. The instrument is based on a combined optics of elliptical mirrors and an x-ray waveguide positioned in the focal plane for further coherence, spatial filtering, and high numerical aperture. Previous results showed the suitability of this instrument for nanoscale tomography of unstained brain tissue. We demonstrate that upon energy variation, the focal spot is stable enough for imaging. To this end, a double-crystal monochromator and automated alignment routines are required. Three tomograms of human brain tissue were recorded and jointly analyzed using phase retrieval based on the contrast transfer function formalism generalized to multiple photon energies. Variations of the electron density of the sample are successfully reconstructed. Society of Photo-Optical Instrumentation Engineers 2020-01-22 2020-01 /pmc/articles/PMC6975131/ /pubmed/32016134 http://dx.doi.org/10.1117/1.JMI.7.1.013501 Text en © 2020 The Authors https://creativecommons.org/licenses/by/4.0/ Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. |
spellingShingle | Physics of Medical Imaging Robisch, Anna-Lena Eckermann, Marina Töpperwien, Mareike van der Meer, Franziska Stadelmann, Christine Salditt, Tim Nanoscale x-ray holotomography of human brain tissue with phase retrieval based on multienergy recordings |
title | Nanoscale x-ray holotomography of human brain tissue with phase retrieval based on multienergy recordings |
title_full | Nanoscale x-ray holotomography of human brain tissue with phase retrieval based on multienergy recordings |
title_fullStr | Nanoscale x-ray holotomography of human brain tissue with phase retrieval based on multienergy recordings |
title_full_unstemmed | Nanoscale x-ray holotomography of human brain tissue with phase retrieval based on multienergy recordings |
title_short | Nanoscale x-ray holotomography of human brain tissue with phase retrieval based on multienergy recordings |
title_sort | nanoscale x-ray holotomography of human brain tissue with phase retrieval based on multienergy recordings |
topic | Physics of Medical Imaging |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6975131/ https://www.ncbi.nlm.nih.gov/pubmed/32016134 http://dx.doi.org/10.1117/1.JMI.7.1.013501 |
work_keys_str_mv | AT robischannalena nanoscalexrayholotomographyofhumanbraintissuewithphaseretrievalbasedonmultienergyrecordings AT eckermannmarina nanoscalexrayholotomographyofhumanbraintissuewithphaseretrievalbasedonmultienergyrecordings AT topperwienmareike nanoscalexrayholotomographyofhumanbraintissuewithphaseretrievalbasedonmultienergyrecordings AT vandermeerfranziska nanoscalexrayholotomographyofhumanbraintissuewithphaseretrievalbasedonmultienergyrecordings AT stadelmannchristine nanoscalexrayholotomographyofhumanbraintissuewithphaseretrievalbasedonmultienergyrecordings AT salditttim nanoscalexrayholotomographyofhumanbraintissuewithphaseretrievalbasedonmultienergyrecordings |