Cargando…
Guiding the Refinement of Biochemical Knowledgebases with Ensembles of Metabolic Networks and Machine Learning
Mechanistic models explicitly represent hypothesized biological knowledge. As such, they offer more generalizability than data-driven models. However, identifying model curation efforts that improve performance for mechanistic models is nontrivial. Here, we develop a solution to this problem for gen...
Autores principales: | Medlock, Gregory L., Papin, Jason A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6975163/ https://www.ncbi.nlm.nih.gov/pubmed/31926940 http://dx.doi.org/10.1016/j.cels.2019.11.006 |
Ejemplares similares
-
Medusa: Software to build and analyze ensembles of genome-scale metabolic network reconstructions
por: Medlock, Gregory L., et al.
Publicado: (2020) -
Managing uncertainty in metabolic network structure and improving predictions using EnsembleFBA
por: Biggs, Matthew B., et al.
Publicado: (2017) -
Machine learning guided aptamer refinement and discovery
por: Bashir, Ali, et al.
Publicado: (2021) -
BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions
por: Schellenberger, Jan, et al.
Publicado: (2010) -
Efficient Ensemble Refinement by Reweighting
por: Köfinger, Jürgen, et al.
Publicado: (2019)