Cargando…
High-order radiomics features based on T2 FLAIR MRI predict multiple glioma immunohistochemical features: A more precise and personalized gliomas management
OBJECTIVE: To investigate the performance of high-order radiomics features and models based on T2-weighted fluid-attenuated inversion recovery (T2 FLAIR) in predicting the immunohistochemical biomarkers of glioma, in order to execute a non-invasive, more precise and personalized glioma disease manag...
Autores principales: | Li, Jing, Liu, Siyun, Qin, Ying, Zhang, Yan, Wang, Ning, Liu, Huaijun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6975558/ https://www.ncbi.nlm.nih.gov/pubmed/31968004 http://dx.doi.org/10.1371/journal.pone.0227703 |
Ejemplares similares
-
Application of radiomics feature captured from MRI for prediction of recurrence for glioma patients
por: Liu, Canyu, et al.
Publicado: (2022) -
Grading of Gliomas by Using Radiomic Features on Multiple Magnetic Resonance Imaging (MRI) Sequences
por: Qin, Jiang-bo, et al.
Publicado: (2017) -
The combination of radiomics features and VASARI standard to predict glioma grade
por: You, Wei, et al.
Publicado: (2023) -
Radiomics and Qualitative Features From Multiparametric MRI Predict Molecular Subtypes in Patients With Lower-Grade Glioma
por: Sun, Chen, et al.
Publicado: (2022) -
Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features
por: Bakas, Spyridon, et al.
Publicado: (2017)