Cargando…

A human mission to Mars: Predicting the bone mineral density loss of astronauts

A round-trip human mission to Mars is anticipated to last roughly three years. Spaceflight conditions are known to cause loss of bone mineral density (BMD) in astronauts, increasing bone fracture risk. There is an urgent need to understand BMD progression as a function of spaceflight time to minimiz...

Descripción completa

Detalles Bibliográficos
Autores principales: Axpe, Eneko, Chan, Doreen, Abegaz, Metadel F., Schreurs, Ann-Sofie, Alwood, Joshua S., Globus, Ruth K., Appel, Eric A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6975633/
https://www.ncbi.nlm.nih.gov/pubmed/31967993
http://dx.doi.org/10.1371/journal.pone.0226434
_version_ 1783490295991631872
author Axpe, Eneko
Chan, Doreen
Abegaz, Metadel F.
Schreurs, Ann-Sofie
Alwood, Joshua S.
Globus, Ruth K.
Appel, Eric A.
author_facet Axpe, Eneko
Chan, Doreen
Abegaz, Metadel F.
Schreurs, Ann-Sofie
Alwood, Joshua S.
Globus, Ruth K.
Appel, Eric A.
author_sort Axpe, Eneko
collection PubMed
description A round-trip human mission to Mars is anticipated to last roughly three years. Spaceflight conditions are known to cause loss of bone mineral density (BMD) in astronauts, increasing bone fracture risk. There is an urgent need to understand BMD progression as a function of spaceflight time to minimize associated health implications and ensure mission success. Here we introduce a nonlinear mathematical model of BMD loss for candidate human missions to Mars: (i) Opposition class trajectory (400–600 days), and (ii) Conjunction class trajectory (1000–1200 days). Using femoral neck BMD data (N = 69) from astronauts after 132-day and 228-day spaceflight and the World Health Organization’s fracture risk recommendation, we predicted post-mission risk and associated osteopathology. Our model predicts 62% opposition class astronauts and 100% conjunction class astronauts will develop osteopenia, with 33% being at risk for osteoporosis. This model can help in implementing countermeasure strategies and inform space agencies’ choice of crew candidates.
format Online
Article
Text
id pubmed-6975633
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-69756332020-02-04 A human mission to Mars: Predicting the bone mineral density loss of astronauts Axpe, Eneko Chan, Doreen Abegaz, Metadel F. Schreurs, Ann-Sofie Alwood, Joshua S. Globus, Ruth K. Appel, Eric A. PLoS One Research Article A round-trip human mission to Mars is anticipated to last roughly three years. Spaceflight conditions are known to cause loss of bone mineral density (BMD) in astronauts, increasing bone fracture risk. There is an urgent need to understand BMD progression as a function of spaceflight time to minimize associated health implications and ensure mission success. Here we introduce a nonlinear mathematical model of BMD loss for candidate human missions to Mars: (i) Opposition class trajectory (400–600 days), and (ii) Conjunction class trajectory (1000–1200 days). Using femoral neck BMD data (N = 69) from astronauts after 132-day and 228-day spaceflight and the World Health Organization’s fracture risk recommendation, we predicted post-mission risk and associated osteopathology. Our model predicts 62% opposition class astronauts and 100% conjunction class astronauts will develop osteopenia, with 33% being at risk for osteoporosis. This model can help in implementing countermeasure strategies and inform space agencies’ choice of crew candidates. Public Library of Science 2020-01-22 /pmc/articles/PMC6975633/ /pubmed/31967993 http://dx.doi.org/10.1371/journal.pone.0226434 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication.
spellingShingle Research Article
Axpe, Eneko
Chan, Doreen
Abegaz, Metadel F.
Schreurs, Ann-Sofie
Alwood, Joshua S.
Globus, Ruth K.
Appel, Eric A.
A human mission to Mars: Predicting the bone mineral density loss of astronauts
title A human mission to Mars: Predicting the bone mineral density loss of astronauts
title_full A human mission to Mars: Predicting the bone mineral density loss of astronauts
title_fullStr A human mission to Mars: Predicting the bone mineral density loss of astronauts
title_full_unstemmed A human mission to Mars: Predicting the bone mineral density loss of astronauts
title_short A human mission to Mars: Predicting the bone mineral density loss of astronauts
title_sort human mission to mars: predicting the bone mineral density loss of astronauts
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6975633/
https://www.ncbi.nlm.nih.gov/pubmed/31967993
http://dx.doi.org/10.1371/journal.pone.0226434
work_keys_str_mv AT axpeeneko ahumanmissiontomarspredictingthebonemineraldensitylossofastronauts
AT chandoreen ahumanmissiontomarspredictingthebonemineraldensitylossofastronauts
AT abegazmetadelf ahumanmissiontomarspredictingthebonemineraldensitylossofastronauts
AT schreursannsofie ahumanmissiontomarspredictingthebonemineraldensitylossofastronauts
AT alwoodjoshuas ahumanmissiontomarspredictingthebonemineraldensitylossofastronauts
AT globusruthk ahumanmissiontomarspredictingthebonemineraldensitylossofastronauts
AT appelerica ahumanmissiontomarspredictingthebonemineraldensitylossofastronauts
AT axpeeneko humanmissiontomarspredictingthebonemineraldensitylossofastronauts
AT chandoreen humanmissiontomarspredictingthebonemineraldensitylossofastronauts
AT abegazmetadelf humanmissiontomarspredictingthebonemineraldensitylossofastronauts
AT schreursannsofie humanmissiontomarspredictingthebonemineraldensitylossofastronauts
AT alwoodjoshuas humanmissiontomarspredictingthebonemineraldensitylossofastronauts
AT globusruthk humanmissiontomarspredictingthebonemineraldensitylossofastronauts
AT appelerica humanmissiontomarspredictingthebonemineraldensitylossofastronauts