Cargando…

Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources

Saprotrophic cord-forming basidiomycetes, with their mycelial networks at the soil/litter interface on the forest floor, play a major role in wood decomposition and nutrient cycling/relocation. Many studies have investigated foraging behaviour of their mycelium, but there is little information on th...

Descripción completa

Detalles Bibliográficos
Autores principales: Fukasawa, Yu, Savoury, Melanie, Boddy, Lynne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6976561/
https://www.ncbi.nlm.nih.gov/pubmed/31628441
http://dx.doi.org/10.1038/s41396-019-0536-3
Descripción
Sumario:Saprotrophic cord-forming basidiomycetes, with their mycelial networks at the soil/litter interface on the forest floor, play a major role in wood decomposition and nutrient cycling/relocation. Many studies have investigated foraging behaviour of their mycelium, but there is little information on their intelligence. Here, we investigate the effects of relative size of inoculum wood and new wood resource (bait) on the decision of a mycelium to remain in, or migrate from, inoculum to bait using Phanerochaete velutina as a model. Experiments allowed mycelium to grow from an inoculum across the surface of a soil microcosm where it encountered a new wood bait. After colonisation of the bait, the original inoculum was moved to a tray of fresh soil to determine whether the fungus was still able to grow out. This also allowed us to test the mycelium’s memory of growth direction. When inocula were transferred to new soil, there was regrowth from 67% of the inocula, and a threshold bait size acted as a cue for the mycelium’s decision to migrate for a final time, rather than a threshold of relative size of inoculum: bait. There was greater regrowth from the side that originally faced the new bait, implying memory of growth direction.