Cargando…

Biotic soil-plant interaction processes explain most of hysteric soil CO(2) efflux response to temperature in cross-factorial mesocosm experiment

Ecosystem carbon flux partitioning is strongly influenced by poorly constrained soil CO(2) efflux (F(soil)). Simple model applications (Arrhenius and Q(10)) do not account for observed diel hysteresis between F(soil) and soil temperature. How this hysteresis emerges and how it will respond to variat...

Descripción completa

Detalles Bibliográficos
Autores principales: Dusza, Yann, Sanchez-Cañete, Enrique P., Galliard, Jean-François Le, Ferrière, Régis, Chollet, Simon, Massol, Florent, Hansart, Amandine, Juarez, Sabrina, Dontsova, Katerina, Haren, Joost van, Troch, Peter, Pavao-Zuckerman, Mitchell A., Hamerlynck, Erik, Barron-Gafford, Greg A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6976568/
https://www.ncbi.nlm.nih.gov/pubmed/31969580
http://dx.doi.org/10.1038/s41598-019-55390-6
_version_ 1783490331370586112
author Dusza, Yann
Sanchez-Cañete, Enrique P.
Galliard, Jean-François Le
Ferrière, Régis
Chollet, Simon
Massol, Florent
Hansart, Amandine
Juarez, Sabrina
Dontsova, Katerina
Haren, Joost van
Troch, Peter
Pavao-Zuckerman, Mitchell A.
Hamerlynck, Erik
Barron-Gafford, Greg A.
author_facet Dusza, Yann
Sanchez-Cañete, Enrique P.
Galliard, Jean-François Le
Ferrière, Régis
Chollet, Simon
Massol, Florent
Hansart, Amandine
Juarez, Sabrina
Dontsova, Katerina
Haren, Joost van
Troch, Peter
Pavao-Zuckerman, Mitchell A.
Hamerlynck, Erik
Barron-Gafford, Greg A.
author_sort Dusza, Yann
collection PubMed
description Ecosystem carbon flux partitioning is strongly influenced by poorly constrained soil CO(2) efflux (F(soil)). Simple model applications (Arrhenius and Q(10)) do not account for observed diel hysteresis between F(soil) and soil temperature. How this hysteresis emerges and how it will respond to variation in vegetation or soil moisture remains unknown. We used an ecosystem-level experimental system to independently control potential abiotic and biotic drivers of the F(soil)-T hysteresis. We hypothesized a principally biological cause for the hysteresis. Alternatively, F(soil) hysteresis is primarily driven by thermal convection through the soil profile. We conducted experiments under normal, fluctuating diurnal soil temperatures and under conditions where we held soil temperature near constant. We found (i) significant and nearly equal amplitudes of hysteresis regardless of soil temperature regime, and (ii) the amplitude of hysteresis was most closely tied to baseline rates of F(soil), which were mostly driven by photosynthetic rates. Together, these findings suggest a more biologically-driven mechanism associated with photosynthate transport in yielding the observed patterns of soil CO(2) efflux being out of sync with soil temperature. These findings should be considered on future partitioning models of ecosystem respiration.
format Online
Article
Text
id pubmed-6976568
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-69765682020-01-29 Biotic soil-plant interaction processes explain most of hysteric soil CO(2) efflux response to temperature in cross-factorial mesocosm experiment Dusza, Yann Sanchez-Cañete, Enrique P. Galliard, Jean-François Le Ferrière, Régis Chollet, Simon Massol, Florent Hansart, Amandine Juarez, Sabrina Dontsova, Katerina Haren, Joost van Troch, Peter Pavao-Zuckerman, Mitchell A. Hamerlynck, Erik Barron-Gafford, Greg A. Sci Rep Article Ecosystem carbon flux partitioning is strongly influenced by poorly constrained soil CO(2) efflux (F(soil)). Simple model applications (Arrhenius and Q(10)) do not account for observed diel hysteresis between F(soil) and soil temperature. How this hysteresis emerges and how it will respond to variation in vegetation or soil moisture remains unknown. We used an ecosystem-level experimental system to independently control potential abiotic and biotic drivers of the F(soil)-T hysteresis. We hypothesized a principally biological cause for the hysteresis. Alternatively, F(soil) hysteresis is primarily driven by thermal convection through the soil profile. We conducted experiments under normal, fluctuating diurnal soil temperatures and under conditions where we held soil temperature near constant. We found (i) significant and nearly equal amplitudes of hysteresis regardless of soil temperature regime, and (ii) the amplitude of hysteresis was most closely tied to baseline rates of F(soil), which were mostly driven by photosynthetic rates. Together, these findings suggest a more biologically-driven mechanism associated with photosynthate transport in yielding the observed patterns of soil CO(2) efflux being out of sync with soil temperature. These findings should be considered on future partitioning models of ecosystem respiration. Nature Publishing Group UK 2020-01-22 /pmc/articles/PMC6976568/ /pubmed/31969580 http://dx.doi.org/10.1038/s41598-019-55390-6 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Dusza, Yann
Sanchez-Cañete, Enrique P.
Galliard, Jean-François Le
Ferrière, Régis
Chollet, Simon
Massol, Florent
Hansart, Amandine
Juarez, Sabrina
Dontsova, Katerina
Haren, Joost van
Troch, Peter
Pavao-Zuckerman, Mitchell A.
Hamerlynck, Erik
Barron-Gafford, Greg A.
Biotic soil-plant interaction processes explain most of hysteric soil CO(2) efflux response to temperature in cross-factorial mesocosm experiment
title Biotic soil-plant interaction processes explain most of hysteric soil CO(2) efflux response to temperature in cross-factorial mesocosm experiment
title_full Biotic soil-plant interaction processes explain most of hysteric soil CO(2) efflux response to temperature in cross-factorial mesocosm experiment
title_fullStr Biotic soil-plant interaction processes explain most of hysteric soil CO(2) efflux response to temperature in cross-factorial mesocosm experiment
title_full_unstemmed Biotic soil-plant interaction processes explain most of hysteric soil CO(2) efflux response to temperature in cross-factorial mesocosm experiment
title_short Biotic soil-plant interaction processes explain most of hysteric soil CO(2) efflux response to temperature in cross-factorial mesocosm experiment
title_sort biotic soil-plant interaction processes explain most of hysteric soil co(2) efflux response to temperature in cross-factorial mesocosm experiment
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6976568/
https://www.ncbi.nlm.nih.gov/pubmed/31969580
http://dx.doi.org/10.1038/s41598-019-55390-6
work_keys_str_mv AT duszayann bioticsoilplantinteractionprocessesexplainmostofhystericsoilco2effluxresponsetotemperatureincrossfactorialmesocosmexperiment
AT sanchezcaneteenriquep bioticsoilplantinteractionprocessesexplainmostofhystericsoilco2effluxresponsetotemperatureincrossfactorialmesocosmexperiment
AT galliardjeanfrancoisle bioticsoilplantinteractionprocessesexplainmostofhystericsoilco2effluxresponsetotemperatureincrossfactorialmesocosmexperiment
AT ferriereregis bioticsoilplantinteractionprocessesexplainmostofhystericsoilco2effluxresponsetotemperatureincrossfactorialmesocosmexperiment
AT cholletsimon bioticsoilplantinteractionprocessesexplainmostofhystericsoilco2effluxresponsetotemperatureincrossfactorialmesocosmexperiment
AT massolflorent bioticsoilplantinteractionprocessesexplainmostofhystericsoilco2effluxresponsetotemperatureincrossfactorialmesocosmexperiment
AT hansartamandine bioticsoilplantinteractionprocessesexplainmostofhystericsoilco2effluxresponsetotemperatureincrossfactorialmesocosmexperiment
AT juarezsabrina bioticsoilplantinteractionprocessesexplainmostofhystericsoilco2effluxresponsetotemperatureincrossfactorialmesocosmexperiment
AT dontsovakaterina bioticsoilplantinteractionprocessesexplainmostofhystericsoilco2effluxresponsetotemperatureincrossfactorialmesocosmexperiment
AT harenjoostvan bioticsoilplantinteractionprocessesexplainmostofhystericsoilco2effluxresponsetotemperatureincrossfactorialmesocosmexperiment
AT trochpeter bioticsoilplantinteractionprocessesexplainmostofhystericsoilco2effluxresponsetotemperatureincrossfactorialmesocosmexperiment
AT pavaozuckermanmitchella bioticsoilplantinteractionprocessesexplainmostofhystericsoilco2effluxresponsetotemperatureincrossfactorialmesocosmexperiment
AT hamerlynckerik bioticsoilplantinteractionprocessesexplainmostofhystericsoilco2effluxresponsetotemperatureincrossfactorialmesocosmexperiment
AT barrongaffordgrega bioticsoilplantinteractionprocessesexplainmostofhystericsoilco2effluxresponsetotemperatureincrossfactorialmesocosmexperiment