Cargando…
A Multi-Omics Interpretable Machine Learning Model Reveals Modes of Action of Small Molecules
High-throughput screening and gene signature analyses frequently identify lead therapeutic compounds with unknown modes of action (MoAs), and the resulting uncertainties can lead to the failure of clinical trials. We developed an approach for uncovering MoAs through an interpretable machine learning...
Autores principales: | Patel-Murray, Natasha L., Adam, Miriam, Huynh, Nhan, Wassie, Brook T., Milani, Pamela, Fraenkel, Ernest |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6976599/ https://www.ncbi.nlm.nih.gov/pubmed/31969612 http://dx.doi.org/10.1038/s41598-020-57691-7 |
Ejemplares similares
-
Network-Based Interpretation of Diverse High-Throughput Datasets through the Omics Integrator Software Package
por: Tuncbag, Nurcan, et al.
Publicado: (2016) -
Cell freezing protocol suitable for ATAC-Seq on motor neurons derived from human induced pluripotent stem cells
por: Milani, Pamela, et al.
Publicado: (2016) -
Identifying therapeutic targets by combining transcriptional data with ordinal clinical measurements
por: Pirhaji, Leila, et al.
Publicado: (2017) -
Omics Methods for Probing the Mode of Action of Natural and Synthetic Phytotoxins
por: Duke, Stephen O., et al.
Publicado: (2013) -
An integrated multi-omic analysis of iPSC-derived motor neurons from C9ORF72 ALS patients
por: Li, Jonathan, et al.
Publicado: (2021)