Cargando…
Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers
Magnetic skyrmions are topologically non-trivial nanoscale objects. Their topology, which originates in their chiral domain wall winding, governs their unique response to a motion-inducing force. When subjected to an electrical current, the chiral winding of the spin texture leads to a deflection of...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6976618/ https://www.ncbi.nlm.nih.gov/pubmed/31969569 http://dx.doi.org/10.1038/s41467-019-14232-9 |
_version_ | 1783490341890949120 |
---|---|
author | Zeissler, Katharina Finizio, Simone Barton, Craig Huxtable, Alexandra J. Massey, Jamie Raabe, Jörg Sadovnikov, Alexandr V. Nikitov, Sergey A. Brearton, Richard Hesjedal, Thorsten van der Laan, Gerrit Rosamond, Mark C. Linfield, Edmund H. Burnell, Gavin Marrows, Christopher H. |
author_facet | Zeissler, Katharina Finizio, Simone Barton, Craig Huxtable, Alexandra J. Massey, Jamie Raabe, Jörg Sadovnikov, Alexandr V. Nikitov, Sergey A. Brearton, Richard Hesjedal, Thorsten van der Laan, Gerrit Rosamond, Mark C. Linfield, Edmund H. Burnell, Gavin Marrows, Christopher H. |
author_sort | Zeissler, Katharina |
collection | PubMed |
description | Magnetic skyrmions are topologically non-trivial nanoscale objects. Their topology, which originates in their chiral domain wall winding, governs their unique response to a motion-inducing force. When subjected to an electrical current, the chiral winding of the spin texture leads to a deflection of the skyrmion trajectory, characterised by an angle with respect to the applied force direction. This skyrmion Hall angle is predicted to be skyrmion diameter-dependent. In contrast, our experimental study finds that the skyrmion Hall angle is diameter-independent for skyrmions with diameters ranging from 35 to 825 nm. At an average velocity of 6 ± 1 ms(−1), the average skyrmion Hall angle was measured to be 9° ± 2°. In fact, the skyrmion dynamics is dominated by the local energy landscape such as materials defects and the local magnetic configuration. |
format | Online Article Text |
id | pubmed-6976618 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-69766182020-01-24 Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers Zeissler, Katharina Finizio, Simone Barton, Craig Huxtable, Alexandra J. Massey, Jamie Raabe, Jörg Sadovnikov, Alexandr V. Nikitov, Sergey A. Brearton, Richard Hesjedal, Thorsten van der Laan, Gerrit Rosamond, Mark C. Linfield, Edmund H. Burnell, Gavin Marrows, Christopher H. Nat Commun Article Magnetic skyrmions are topologically non-trivial nanoscale objects. Their topology, which originates in their chiral domain wall winding, governs their unique response to a motion-inducing force. When subjected to an electrical current, the chiral winding of the spin texture leads to a deflection of the skyrmion trajectory, characterised by an angle with respect to the applied force direction. This skyrmion Hall angle is predicted to be skyrmion diameter-dependent. In contrast, our experimental study finds that the skyrmion Hall angle is diameter-independent for skyrmions with diameters ranging from 35 to 825 nm. At an average velocity of 6 ± 1 ms(−1), the average skyrmion Hall angle was measured to be 9° ± 2°. In fact, the skyrmion dynamics is dominated by the local energy landscape such as materials defects and the local magnetic configuration. Nature Publishing Group UK 2020-01-22 /pmc/articles/PMC6976618/ /pubmed/31969569 http://dx.doi.org/10.1038/s41467-019-14232-9 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Zeissler, Katharina Finizio, Simone Barton, Craig Huxtable, Alexandra J. Massey, Jamie Raabe, Jörg Sadovnikov, Alexandr V. Nikitov, Sergey A. Brearton, Richard Hesjedal, Thorsten van der Laan, Gerrit Rosamond, Mark C. Linfield, Edmund H. Burnell, Gavin Marrows, Christopher H. Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers |
title | Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers |
title_full | Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers |
title_fullStr | Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers |
title_full_unstemmed | Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers |
title_short | Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers |
title_sort | diameter-independent skyrmion hall angle observed in chiral magnetic multilayers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6976618/ https://www.ncbi.nlm.nih.gov/pubmed/31969569 http://dx.doi.org/10.1038/s41467-019-14232-9 |
work_keys_str_mv | AT zeisslerkatharina diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers AT finiziosimone diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers AT bartoncraig diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers AT huxtablealexandraj diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers AT masseyjamie diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers AT raabejorg diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers AT sadovnikovalexandrv diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers AT nikitovsergeya diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers AT breartonrichard diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers AT hesjedalthorsten diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers AT vanderlaangerrit diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers AT rosamondmarkc diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers AT linfieldedmundh diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers AT burnellgavin diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers AT marrowschristopherh diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers |