Cargando…

Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers

Magnetic skyrmions are topologically non-trivial nanoscale objects. Their topology, which originates in their chiral domain wall winding, governs their unique response to a motion-inducing force. When subjected to an electrical current, the chiral winding of the spin texture leads to a deflection of...

Descripción completa

Detalles Bibliográficos
Autores principales: Zeissler, Katharina, Finizio, Simone, Barton, Craig, Huxtable, Alexandra J., Massey, Jamie, Raabe, Jörg, Sadovnikov, Alexandr V., Nikitov, Sergey A., Brearton, Richard, Hesjedal, Thorsten, van der Laan, Gerrit, Rosamond, Mark C., Linfield, Edmund H., Burnell, Gavin, Marrows, Christopher H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6976618/
https://www.ncbi.nlm.nih.gov/pubmed/31969569
http://dx.doi.org/10.1038/s41467-019-14232-9
_version_ 1783490341890949120
author Zeissler, Katharina
Finizio, Simone
Barton, Craig
Huxtable, Alexandra J.
Massey, Jamie
Raabe, Jörg
Sadovnikov, Alexandr V.
Nikitov, Sergey A.
Brearton, Richard
Hesjedal, Thorsten
van der Laan, Gerrit
Rosamond, Mark C.
Linfield, Edmund H.
Burnell, Gavin
Marrows, Christopher H.
author_facet Zeissler, Katharina
Finizio, Simone
Barton, Craig
Huxtable, Alexandra J.
Massey, Jamie
Raabe, Jörg
Sadovnikov, Alexandr V.
Nikitov, Sergey A.
Brearton, Richard
Hesjedal, Thorsten
van der Laan, Gerrit
Rosamond, Mark C.
Linfield, Edmund H.
Burnell, Gavin
Marrows, Christopher H.
author_sort Zeissler, Katharina
collection PubMed
description Magnetic skyrmions are topologically non-trivial nanoscale objects. Their topology, which originates in their chiral domain wall winding, governs their unique response to a motion-inducing force. When subjected to an electrical current, the chiral winding of the spin texture leads to a deflection of the skyrmion trajectory, characterised by an angle with respect to the applied force direction. This skyrmion Hall angle is predicted to be skyrmion diameter-dependent. In contrast, our experimental study finds that the skyrmion Hall angle is diameter-independent for skyrmions with diameters ranging from 35 to 825 nm. At an average velocity of 6 ± 1 ms(−1), the average skyrmion Hall angle was measured to be 9° ± 2°. In fact, the skyrmion dynamics is dominated by the local energy landscape such as materials defects and the local magnetic configuration.
format Online
Article
Text
id pubmed-6976618
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-69766182020-01-24 Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers Zeissler, Katharina Finizio, Simone Barton, Craig Huxtable, Alexandra J. Massey, Jamie Raabe, Jörg Sadovnikov, Alexandr V. Nikitov, Sergey A. Brearton, Richard Hesjedal, Thorsten van der Laan, Gerrit Rosamond, Mark C. Linfield, Edmund H. Burnell, Gavin Marrows, Christopher H. Nat Commun Article Magnetic skyrmions are topologically non-trivial nanoscale objects. Their topology, which originates in their chiral domain wall winding, governs their unique response to a motion-inducing force. When subjected to an electrical current, the chiral winding of the spin texture leads to a deflection of the skyrmion trajectory, characterised by an angle with respect to the applied force direction. This skyrmion Hall angle is predicted to be skyrmion diameter-dependent. In contrast, our experimental study finds that the skyrmion Hall angle is diameter-independent for skyrmions with diameters ranging from 35 to 825 nm. At an average velocity of 6 ± 1 ms(−1), the average skyrmion Hall angle was measured to be 9° ± 2°. In fact, the skyrmion dynamics is dominated by the local energy landscape such as materials defects and the local magnetic configuration. Nature Publishing Group UK 2020-01-22 /pmc/articles/PMC6976618/ /pubmed/31969569 http://dx.doi.org/10.1038/s41467-019-14232-9 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Zeissler, Katharina
Finizio, Simone
Barton, Craig
Huxtable, Alexandra J.
Massey, Jamie
Raabe, Jörg
Sadovnikov, Alexandr V.
Nikitov, Sergey A.
Brearton, Richard
Hesjedal, Thorsten
van der Laan, Gerrit
Rosamond, Mark C.
Linfield, Edmund H.
Burnell, Gavin
Marrows, Christopher H.
Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers
title Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers
title_full Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers
title_fullStr Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers
title_full_unstemmed Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers
title_short Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers
title_sort diameter-independent skyrmion hall angle observed in chiral magnetic multilayers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6976618/
https://www.ncbi.nlm.nih.gov/pubmed/31969569
http://dx.doi.org/10.1038/s41467-019-14232-9
work_keys_str_mv AT zeisslerkatharina diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers
AT finiziosimone diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers
AT bartoncraig diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers
AT huxtablealexandraj diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers
AT masseyjamie diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers
AT raabejorg diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers
AT sadovnikovalexandrv diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers
AT nikitovsergeya diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers
AT breartonrichard diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers
AT hesjedalthorsten diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers
AT vanderlaangerrit diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers
AT rosamondmarkc diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers
AT linfieldedmundh diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers
AT burnellgavin diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers
AT marrowschristopherh diameterindependentskyrmionhallangleobservedinchiralmagneticmultilayers