Cargando…

Analysis of Terpene Synthase Family Genes in Camellia sinensis with an Emphasis on Abiotic Stress Conditions

For a better understanding terpenoid volatile production in Camellia sinensis, global terpenoid synthase gene (TPS) transcription analysis was conducted based on transcriptomic data combined with terpenoid metabolic profiling under different abiotic stress conditions. Totally 80 TPS-like genes were...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Han-Chen, Shamala, Lubobi Ferdinand, Yi, Xing-Kai, Yan, Zhen, Wei, Shu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6976640/
https://www.ncbi.nlm.nih.gov/pubmed/31969641
http://dx.doi.org/10.1038/s41598-020-57805-1
Descripción
Sumario:For a better understanding terpenoid volatile production in Camellia sinensis, global terpenoid synthase gene (TPS) transcription analysis was conducted based on transcriptomic data combined with terpenoid metabolic profiling under different abiotic stress conditions. Totally 80 TPS-like genes were identified. Twenty-three CsTPS genes possessed a complete coding sequence and most likely were functional. The remaining 57 in the currently available database lack essential gene structure or full-length transcripts. Distinct tempo-spatial expression patterns of CsTPS genes were found in tea plants. 17 genes were substantially expressed in all the tested organs with a few exceptions. The other 17 were predominantly expressed in leaves whereas additional eight were primarily expressed in flowers. Under the treatments of cold acclimation, salt and polyethylene glycol, CsTPS67, -69 and -71 were all suppressed and the inhibited expression of many others were found in multiple stress treatments. However, methyl jasmonate resulted in the enhanced expression of the majority of CsTPS genes. These transcription data were largely validated using qPCR. Moreover, volatile terpenoid profiling with leaves, flowers and stress-treated plants revealed a general association between the abundances of mono- and sesqui-terpenoids and some CsTPS genes. These results provide vital information for future studies on CsTPS regulation of terpenoid biosynthesis.