Cargando…
An FT-IR and XPS spectroscopy dataset of Pinus ponderosa sporopollenin and related samples to elucidate sporopollenin structural features
The ATR FT-IR spectra of Pinus ponderosa sporopollenin isolated from pollen spores by enzymatic digestion. Sporopollenin is also isolated by solvent extraction, followed by either acidolysis with phosphoric acid, and acetolysis is reported [1]. The FT-IR spectra are supplemented by XPS data of the i...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6976926/ https://www.ncbi.nlm.nih.gov/pubmed/31993473 http://dx.doi.org/10.1016/j.dib.2020.105129 |
Sumario: | The ATR FT-IR spectra of Pinus ponderosa sporopollenin isolated from pollen spores by enzymatic digestion. Sporopollenin is also isolated by solvent extraction, followed by either acidolysis with phosphoric acid, and acetolysis is reported [1]. The FT-IR spectra are supplemented by XPS data of the isolated sporopollenin samples. The enzymatically isolated sporopollenin is subjected to a variety of chemical treatments and modifications, including alkaline hydrolysis, deuteration (by both D(2)0 and methanol-d(4)), sodium cyanoborohydride reduction, hydrolysis by peracetic acid, bromination, acetylization with acetone and octanal, and acid-catalyzed ketal cleavage. The sporopollenin isolated by acidolysis and acetolysis are also subjected to alkaline hydrolysis. The sporopollenin samples are compared to a variety of model compounds representative of putative structural constituents and functional groups. |
---|