Cargando…

Long non-coding RNA X-inactive specific transcript silencing ameliorates primary graft dysfunction following lung transplantation through microRNA-21-dependent mechanism

BACKGROUND: Primary graft dysfunction (PGD) is a known acute lung injury (ALI) and a major cause of fatality post-lung transplantation. Though some long non-coding RNAs (lncRNAs) have been studied in ALI through regulation of microRNAs (miRNAs), their effects on PGD remain undefined. The present stu...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jiwei, Wei, Li, Han, Zhijun, Chen, Zhong, Zhang, Quan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6976928/
https://www.ncbi.nlm.nih.gov/pubmed/31981974
http://dx.doi.org/10.1016/j.ebiom.2019.102600
Descripción
Sumario:BACKGROUND: Primary graft dysfunction (PGD) is a known acute lung injury (ALI) and a major cause of fatality post-lung transplantation. Though some long non-coding RNAs (lncRNAs) have been studied in ALI through regulation of microRNAs (miRNAs), their effects on PGD remain undefined. The present study aims to explore the underlying mechanism of lncRNA X-inactive specific transcript (XIST) in PGD after lung transplantation. METHODS: Initially, the expression of miR-21, IL-12A and XIST was determined by RT-qPCR and western blot analysis. The dual luciferase reporter assay, RNA pull-down and RIP assay were performed to identify the targeting relationship between miR-21 and IL-12A and the binding relationship between miR-21 and XIST. Loss- and gain-of-function investigations were conducted in rats treated with prolonged cold ischemia and polymorphonuclear neutrophils (PMNs). FINDINGS: miR-21 was decreased, whilst XIST and IL-12A were increased in the bronchoalveolar lavage fluid of PGD patients after lung transplantation. Enhanced miR-21 expression in rats and PMNs resulted in downregulated expression of pro-inflammatory factors and chemokines, and enhanced the apoptosis of PMNs. XIST was found to upregulate IL-12A expression in a miR-21-dependent manner. Additionally, XIST silencing enhanced the apoptosis of PMNs and inhibited the neutrophil extracellular trap (NET) formation through upregulation of miR-21 but downregulation of IL-12A in vivo. INTERPRETATION: In summary, lncRNA XIST upregulates IL-12A by binding to miR-21, thereby inducing NET formation and accelerating PGD after lung transplantation. This suggests that inhibition of XIST and NET may be beneficial for the treatment of PGD.