Cargando…
Laser-based gas absorption spectroscopy in decaying hip bone: water vapor as a predictor of osteonecrosis
Affluent blood flow through a complicated net of vessels supplies skeletal bone tissue with oxygen and nutrients. Due to accidental events or physiological processes, the blood supply might be deficient or even disrupted, and the healthy bone decays in a process that, for the hip location, is denote...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6977013/ https://www.ncbi.nlm.nih.gov/pubmed/31230426 http://dx.doi.org/10.1117/1.JBO.24.6.065001 |
Sumario: | Affluent blood flow through a complicated net of vessels supplies skeletal bone tissue with oxygen and nutrients. Due to accidental events or physiological processes, the blood supply might be deficient or even disrupted, and the healthy bone decays in a process that, for the hip location, is denoted as osteonecrosis of the femoral head (ONFH) or avascular femoral head necrosis. Early diagnosis is important for the prognosis. X-ray-based imaging, such as CT or MRI, is not of much value for the early detection. As the decay theoretically is associated with the development of gas-filled pores, gas analysis should have diagnostic value. We have introduced gas in scattering media absorption spectroscopy, as a complementary modality. Eighteen extracted femoral joint heads, diseased as well as normal, were investigated. Diseased samples are associated with clear signals due to water vapor, whereas the normal ones largely lack such features. The results suggest that free water vapor could serve as an early indicator of pore development and thus as a promising predictor of ONFH pathological changes, once the technique has been fully refined. |
---|