Cargando…

Durable Perovskite UV Sensor Based on Engineered Size-Tunable Polydimethylsiloxane Microparticles Using a Facile Capillary Microfluidic Device from a High-Viscosity Precursor

[Image: see text] In this work, size-tunable polydimethylsiloxane (PDMS) microparticles are fabricated from a high-viscosity oil phase using a facile coflowing capillary microfluidic device and optimized aqueous phase composition. The dispersity of the microparticle size is tuned by engineering of t...

Descripción completa

Detalles Bibliográficos
Autores principales: Amjadi, Ahdieh, Hosseini, Mahdi Salami, Ashjari, Tahereh, Roghabadi, Farzaneh Arabpour, Ahmadi, Vahid, Jalili, Kiyumars
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6977031/
https://www.ncbi.nlm.nih.gov/pubmed/31984261
http://dx.doi.org/10.1021/acsomega.9b03010
Descripción
Sumario:[Image: see text] In this work, size-tunable polydimethylsiloxane (PDMS) microparticles are fabricated from a high-viscosity oil phase using a facile coflowing capillary microfluidic device and optimized aqueous phase composition. The dispersity of the microparticle size is tuned by engineering of the viscosity of the continuous phase and flow rate ratio that leads us to achieve monodisperse microparticles. Regarding the high potential of the PDMS microparticles for optical applications, efficient environmentally durable perovskite-based UV sensors are fabricated employing the designed size-tunable microparticles. Surprisingly, the UV sensors comprising CH(3)NH(3)PbBr(3) perovskite quantum dots as UV-sensitive nanocrystals embedded in transparent PDMS microparticles are water resistant because of the high hydrophobicity of PDMS. Remarkably, the UV sensors show a photoluminescence quantum yield as high as 75% that can be employed effortlessly as reusable leak detectors in different fluidic working systems.