Cargando…
Prediction of Acquired Antimicrobial Resistance for Multiple Bacterial Species Using Neural Networks
Machine learning has proven to be a powerful method to predict antimicrobial resistance (AMR) without using prior knowledge for selected bacterial species-antimicrobial combinations. To date, only species-specific machine learning models have been developed, and to the best of our knowledge, the inc...
Autores principales: | Aytan-Aktug, D., Clausen, P. T. L. C., Bortolaia, V., Aarestrup, F. M., Lund, O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6977075/ https://www.ncbi.nlm.nih.gov/pubmed/31964771 http://dx.doi.org/10.1128/mSystems.00774-19 |
Ejemplares similares
-
Predicting Antimicrobial Resistance Using Partial Genome Alignments
por: Aytan-Aktug, D., et al.
Publicado: (2021) -
ResFinder – an open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes
por: Florensa, Alfred Ferrer, et al.
Publicado: (2022) -
PlasmidHostFinder: Prediction of Plasmid Hosts Using Random Forest
por: Aytan-Aktug, Derya, et al.
Publicado: (2022) -
Identification of acquired antimicrobial resistance genes
por: Zankari, Ea, et al.
Publicado: (2012) -
SourceFinder: a Machine-Learning-Based Tool for Identification of Chromosomal, Plasmid, and Bacteriophage Sequences from Assemblies
por: Aytan-Aktug, Derya, et al.
Publicado: (2022)