Cargando…

mSphere of Influence: Expanding the CRISPR Sphere with Single-Locus Proteomics

Lucy Glover’s research focuses on the role of DNA repair and recombination in antigenic variation in the parasite Trypanosoma brucei, the causative agent of both human and animal African trypanosomiasis. In this mSphere of Influence article, she reflects on how “A CRISPR-based approach for proteomic...

Descripción completa

Detalles Bibliográficos
Autor principal: Glover, Lucy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6977177/
https://www.ncbi.nlm.nih.gov/pubmed/31969475
http://dx.doi.org/10.1128/mSphere.00001-20
Descripción
Sumario:Lucy Glover’s research focuses on the role of DNA repair and recombination in antigenic variation in the parasite Trypanosoma brucei, the causative agent of both human and animal African trypanosomiasis. In this mSphere of Influence article, she reflects on how “A CRISPR-based approach for proteomic analysis of a single genomic locus” by Z. J. Waldrip, S. D. Byrum, A. J. Storey, J. Gao, et al. (Epigenetics 9:1207–1211, 2014, https://doi.org/10.4161/epi.29919) made an impact on her research by taking the precision of CRISPR-Cas9 and repurposing it to look at single-locus proteomics. By using this technology in trypanosomes, Dr. Glover and her colleagues could study the dynamic accumulation of repair proteins after specific damage and gain insight into how the location of a double-strand break (DSB) dictates repair pathway choice and how this may influence immune evasion in these parasites.