Cargando…
Computer vision and machine learning enabled soybean root phenotyping pipeline
BACKGROUND: Root system architecture (RSA) traits are of interest for breeding selection; however, measurement of these traits is difficult, resource intensive, and results in large variability. The advent of computer vision and machine learning (ML) enabled trait extraction and measurement has rene...
Autores principales: | Falk, Kevin G., Jubery, Talukder Z., Mirnezami, Seyed V., Parmley, Kyle A., Sarkar, Soumik, Singh, Arti, Ganapathysubramanian, Baskar, Singh, Asheesh K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6977263/ https://www.ncbi.nlm.nih.gov/pubmed/31993072 http://dx.doi.org/10.1186/s13007-019-0550-5 |
Ejemplares similares
-
Using Machine Learning to Develop a Fully Automated Soybean Nodule Acquisition Pipeline (SNAP)
por: Jubery, Talukder Zaki, et al.
Publicado: (2021) -
Soybean Root System Architecture Trait Study through Genotypic, Phenotypic, and Shape-Based Clusters
por: Falk, Kevin G., et al.
Publicado: (2020) -
Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity
por: Jubery, Talukder Z., et al.
Publicado: (2017) -
“Canopy fingerprints” for characterizing three-dimensional point cloud data of soybean canopies
por: Young, Therin J., et al.
Publicado: (2023) -
Development of Optimized Phenomic Predictors for Efficient Plant Breeding Decisions Using Phenomic-Assisted Selection in Soybean
por: Parmley, Kyle, et al.
Publicado: (2019)