Cargando…
Development of Natural Compound Molecular Fingerprint (NC-MFP) with the Dictionary of Natural Products (DNP) for natural product-based drug development
Computer-aided research on the relationship between molecular structures of natural compounds (NC) and their biological activities have been carried out extensively because the molecular structures of new drug candidates are usually analogous to or derived from the molecular structures of NC. In ord...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6977316/ https://www.ncbi.nlm.nih.gov/pubmed/33431009 http://dx.doi.org/10.1186/s13321-020-0410-3 |
_version_ | 1783490482609848320 |
---|---|
author | Seo, Myungwon Shin, Hyun Kil Myung, Yoochan Hwang, Sungbo No, Kyoung Tai |
author_facet | Seo, Myungwon Shin, Hyun Kil Myung, Yoochan Hwang, Sungbo No, Kyoung Tai |
author_sort | Seo, Myungwon |
collection | PubMed |
description | Computer-aided research on the relationship between molecular structures of natural compounds (NC) and their biological activities have been carried out extensively because the molecular structures of new drug candidates are usually analogous to or derived from the molecular structures of NC. In order to express the relationship physically realistically using a computer, it is essential to have a molecular descriptor set that can adequately represent the characteristics of the molecular structures belonging to the NC’s chemical space. Although several topological descriptors have been developed to describe the physical, chemical, and biological properties of organic molecules, especially synthetic compounds, and have been widely used for drug discovery researches, these descriptors have limitations in expressing NC-specific molecular structures. To overcome this, we developed a novel molecular fingerprint, called Natural Compound Molecular Fingerprints (NC-MFP), for explaining NC structures related to biological activities and for applying the same for the natural product (NP)-based drug development. NC-MFP was developed to reflect the structural characteristics of NCs and the commonly used NP classification system. NC-MFP is a scaffold-based molecular fingerprint method comprising scaffolds, scaffold-fragment connection points (SFCP), and fragments. The scaffolds of the NC-MFP have a hierarchical structure. In this study, we introduce 16 structural classes of NPs in the Dictionary of Natural Product database (DNP), and the hierarchical scaffolds of each class were calculated using the Bemis and Murko (BM) method. The scaffold library in NC-MFP comprises 676 scaffolds. To compare how well the NC-MFP represents the structural features of NCs compared to the molecular fingerprints that have been widely used for organic molecular representation, two kinds of binary classification tasks were performed. Task I is a binary classification of the NCs in commercially available library DB into a NC or synthetic compound. Task II is classifying whether NCs with inhibitory activity in seven biological target proteins are active or inactive. Two tasks were developed with some molecular fingerprints, including NC-MFP, using the 1-nearest neighbor (1-NN) method. The performance of task I showed that NC-MFP is a practical molecular fingerprint to classify NC structures from the data set compared with other molecular fingerprints. Performance of task II with NC-MFP outperformed compared with other molecular fingerprints, suggesting that the NC-MFP is useful to explain NC structures related to biological activities. In conclusion, NC-MFP is a robust molecular fingerprint in classifying NC structures and explaining the biological activities of NC structures. Therefore, we suggest NC-MFP as a potent molecular descriptor of the virtual screening of NC for natural product-based drug development. [Image: see text] |
format | Online Article Text |
id | pubmed-6977316 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-69773162020-01-28 Development of Natural Compound Molecular Fingerprint (NC-MFP) with the Dictionary of Natural Products (DNP) for natural product-based drug development Seo, Myungwon Shin, Hyun Kil Myung, Yoochan Hwang, Sungbo No, Kyoung Tai J Cheminform Methodology Computer-aided research on the relationship between molecular structures of natural compounds (NC) and their biological activities have been carried out extensively because the molecular structures of new drug candidates are usually analogous to or derived from the molecular structures of NC. In order to express the relationship physically realistically using a computer, it is essential to have a molecular descriptor set that can adequately represent the characteristics of the molecular structures belonging to the NC’s chemical space. Although several topological descriptors have been developed to describe the physical, chemical, and biological properties of organic molecules, especially synthetic compounds, and have been widely used for drug discovery researches, these descriptors have limitations in expressing NC-specific molecular structures. To overcome this, we developed a novel molecular fingerprint, called Natural Compound Molecular Fingerprints (NC-MFP), for explaining NC structures related to biological activities and for applying the same for the natural product (NP)-based drug development. NC-MFP was developed to reflect the structural characteristics of NCs and the commonly used NP classification system. NC-MFP is a scaffold-based molecular fingerprint method comprising scaffolds, scaffold-fragment connection points (SFCP), and fragments. The scaffolds of the NC-MFP have a hierarchical structure. In this study, we introduce 16 structural classes of NPs in the Dictionary of Natural Product database (DNP), and the hierarchical scaffolds of each class were calculated using the Bemis and Murko (BM) method. The scaffold library in NC-MFP comprises 676 scaffolds. To compare how well the NC-MFP represents the structural features of NCs compared to the molecular fingerprints that have been widely used for organic molecular representation, two kinds of binary classification tasks were performed. Task I is a binary classification of the NCs in commercially available library DB into a NC or synthetic compound. Task II is classifying whether NCs with inhibitory activity in seven biological target proteins are active or inactive. Two tasks were developed with some molecular fingerprints, including NC-MFP, using the 1-nearest neighbor (1-NN) method. The performance of task I showed that NC-MFP is a practical molecular fingerprint to classify NC structures from the data set compared with other molecular fingerprints. Performance of task II with NC-MFP outperformed compared with other molecular fingerprints, suggesting that the NC-MFP is useful to explain NC structures related to biological activities. In conclusion, NC-MFP is a robust molecular fingerprint in classifying NC structures and explaining the biological activities of NC structures. Therefore, we suggest NC-MFP as a potent molecular descriptor of the virtual screening of NC for natural product-based drug development. [Image: see text] Springer International Publishing 2020-01-22 /pmc/articles/PMC6977316/ /pubmed/33431009 http://dx.doi.org/10.1186/s13321-020-0410-3 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Methodology Seo, Myungwon Shin, Hyun Kil Myung, Yoochan Hwang, Sungbo No, Kyoung Tai Development of Natural Compound Molecular Fingerprint (NC-MFP) with the Dictionary of Natural Products (DNP) for natural product-based drug development |
title | Development of Natural Compound Molecular Fingerprint (NC-MFP) with the Dictionary of Natural Products (DNP) for natural product-based drug development |
title_full | Development of Natural Compound Molecular Fingerprint (NC-MFP) with the Dictionary of Natural Products (DNP) for natural product-based drug development |
title_fullStr | Development of Natural Compound Molecular Fingerprint (NC-MFP) with the Dictionary of Natural Products (DNP) for natural product-based drug development |
title_full_unstemmed | Development of Natural Compound Molecular Fingerprint (NC-MFP) with the Dictionary of Natural Products (DNP) for natural product-based drug development |
title_short | Development of Natural Compound Molecular Fingerprint (NC-MFP) with the Dictionary of Natural Products (DNP) for natural product-based drug development |
title_sort | development of natural compound molecular fingerprint (nc-mfp) with the dictionary of natural products (dnp) for natural product-based drug development |
topic | Methodology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6977316/ https://www.ncbi.nlm.nih.gov/pubmed/33431009 http://dx.doi.org/10.1186/s13321-020-0410-3 |
work_keys_str_mv | AT seomyungwon developmentofnaturalcompoundmolecularfingerprintncmfpwiththedictionaryofnaturalproductsdnpfornaturalproductbaseddrugdevelopment AT shinhyunkil developmentofnaturalcompoundmolecularfingerprintncmfpwiththedictionaryofnaturalproductsdnpfornaturalproductbaseddrugdevelopment AT myungyoochan developmentofnaturalcompoundmolecularfingerprintncmfpwiththedictionaryofnaturalproductsdnpfornaturalproductbaseddrugdevelopment AT hwangsungbo developmentofnaturalcompoundmolecularfingerprintncmfpwiththedictionaryofnaturalproductsdnpfornaturalproductbaseddrugdevelopment AT nokyoungtai developmentofnaturalcompoundmolecularfingerprintncmfpwiththedictionaryofnaturalproductsdnpfornaturalproductbaseddrugdevelopment |