Cargando…

Reducing the damage of quinoa saponins on human gastric mucosal cells by a heating process

Different food processing methods will influence the structure and activity of compounds. In this work, molecular structure and different content crude saponins that were extracted from quinoa, treated with water soaking, water boiling, and water steaming were analyzed by HPLC. Flow cytometry was em...

Descripción completa

Detalles Bibliográficos
Autores principales: Xue, Peng, Zhao, Lei, Wang, Yujie, Hou, Zhaohua, Zhang, Fengxiang, Yang, Xiushi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6977518/
https://www.ncbi.nlm.nih.gov/pubmed/31993174
http://dx.doi.org/10.1002/fsn3.1332
Descripción
Sumario:Different food processing methods will influence the structure and activity of compounds. In this work, molecular structure and different content crude saponins that were extracted from quinoa, treated with water soaking, water boiling, and water steaming were analyzed by HPLC. Flow cytometry was employed to investigate the effects of the main saponins on the GES‐1 cell line. HPLC/MS analysis revealed that water soaking induced an extensive conversion of polar saponin Qc (424.41 ± 21.11 mg/g) to the less polar compound Qf (247.04 ± 15.71 mg/g). After treatment with 100 μg of Qf instead of Qc for 24 hr, the percentage of dead cells increased from 20.1 ± 2.2% to 86.2 ± 4.8%. One major reason of this result is that less polar saponins could damage membrane integrity more easier than polar saponins. The results indicate that saponin toxicity is enhanced after degradation, so it is necessary to avoid degradation before use.