Cargando…
Comparative impact of platelet rich plasma and transforming growth factor-β on chondrogenic differentiation of human adipose derived stem cells
[Image: see text] Introduction: Transforming growth factor-beta (TGF-β) is known as standard chondrogenic differentiation agent, even though it comes with undesirable side effects such as early hypertrophic maturation, mineralization, and secretion of inflammatory/angiogenic factors. On the other ha...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Tabriz University of Medical Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6977594/ https://www.ncbi.nlm.nih.gov/pubmed/31988855 http://dx.doi.org/10.15171/bi.2020.05 |
Sumario: | [Image: see text] Introduction: Transforming growth factor-beta (TGF-β) is known as standard chondrogenic differentiation agent, even though it comes with undesirable side effects such as early hypertrophic maturation, mineralization, and secretion of inflammatory/angiogenic factors. On the other hand, platelet-rich plasma (PRP) is found to have a chondrogenic impact on mesenchymal stem cell proliferation and differentiation, with no considerable side effects. Therefore, we compared chondrogenic impact of TGF-β and PRP on adipose-derived stem cells (ADSCs), to see if PRP could be introduced as an alternative to TGF-β. Methods: Differentiation of ADSCs was monitored using a couple of methods including glycosaminoglycan production, miRNAs expression, vascular endothelial growth factor (VEGF)/tumor necrosis factor alpha (TNFα) secretion, alkaline phosphatase (ALP) and calcium content assays. Results: Accordingly, the treatment of differentiating cells with 5% (v/v) PRP resulted in higher glycosaminoglycan production, enhanced SOX9 transcription, and lowered TNFα and VEGF secretion compared to the control and TGF-β groups. Besides, the application of PRP to the media up-regulated miR-146a and miR-199a in early and late stages of chondrogenesis, respectively. Conclusion: PRP induces in vitro chondrogenesis, as well as TGF-β with lesser inflammatory and hypertrophic side effects. |
---|