Cargando…
Association of DIAPH1 gene polymorphisms with ischemic stroke
DIAPH1 is a formin protein involved in actin polymerization with important roles in vascular remodeling and thrombosis. To investigate potential associations of DIAPH1 single-nucleotide polymorphisms (SNPs) with hypertension and stroke, 2,012 patients with hypertension and 2,210 controls, 2,966 stro...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6977662/ https://www.ncbi.nlm.nih.gov/pubmed/31899686 http://dx.doi.org/10.18632/aging.102631 |
Sumario: | DIAPH1 is a formin protein involved in actin polymerization with important roles in vascular remodeling and thrombosis. To investigate potential associations of DIAPH1 single-nucleotide polymorphisms (SNPs) with hypertension and stroke, 2,012 patients with hypertension and 2,210 controls, 2,966 stroke cases [2,212 ischemic stroke (IS), 754 hemorrhagic stroke (HS)] and 2,590 controls were enrolled respectively in the case-control study. A total of 4,098 individual were included in the cohort study. DIAPH1 mRNA expression was compared between 66 IS [43 small artery occlusion (SAO) and 23 large-artery atherosclerosis (LAA)] and 58 controls. Odds ratio (OR), hazard ratio (HR) and 95% confidence interval (CI) were calculated by logistic and cox regression analysis. Rs7703688 T>C variation was significantly associated with an increased risk of IS [OR (95% CI) was 1.721 (1.486-1.993), P=4.139×10(-12)]. Association of rs7703688 with stroke risk was further validated in the cohort study [adjusted HRs (95% CIs) for additive and recessive models were 1.385 (1.001-1.918), P=0.049, and 2.882 (1.038-8.004), P=0.042, respectively)]. DIAPH1 mRNA expression was significantly downregulated in IS. In SAO stroke subtype, DIAPH1 expression has an increased trend among rs251019 genotypes (P(trend)=0.048). These novel findings suggest that DIAPH1 variation contributes to genetic susceptibility to stroke risk, especially the SAO subtype of IS. |
---|