Cargando…
Identifying unreliable predictions in clinical risk models
The ability to identify patients who are likely to have an adverse outcome is an essential component of good clinical care. Therefore, predictive risk stratification models play an important role in clinical decision making. Determining whether a given predictive model is suitable for clinical use u...
Autores principales: | Myers, Paul D., Ng, Kenney, Severson, Kristen, Kartoun, Uri, Dai, Wangzhi, Huang, Wei, Anderson, Frederick A., Stultz, Collin M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6978376/ https://www.ncbi.nlm.nih.gov/pubmed/31993506 http://dx.doi.org/10.1038/s41746-019-0209-7 |
Ejemplares similares
-
Choosing Clinical Variables for Risk Stratification Post-Acute Coronary Syndrome
por: Myers, Paul D., et al.
Publicado: (2019) -
The MELD-Plus: A generalizable prediction risk score in cirrhosis
por: Kartoun, Uri, et al.
Publicado: (2017) -
EFSA’s toxicological assessment of aspartame: was it even-handedly trying to identify possible unreliable positives and unreliable negatives?
por: Millstone, Erik Paul, et al.
Publicado: (2019) -
Personalized treatment options for chronic diseases using precision cohort analytics
por: Ng, Kenney, et al.
Publicado: (2021) -
Precision population analytics: population management at the point-of-care
por: Tang, Paul C, et al.
Publicado: (2020)