Cargando…
Detecting the Information of Functional Connectivity Networks in Normal Aging Using Deep Learning From a Big Data Perspective
A resting-state functional connectivity (rsFC)-constructed functional network (FN) derived from functional magnetic resonance imaging (fMRI) data can effectively mine alterations in brain function during aging due to the non-invasive and effective advantages of fMRI. With global health research focu...
Autores principales: | Wen, Xin, Dong, Li, Chen, Junjie, Xiang, Jie, Yang, Jie, Li, Hechun, Liu, Xiaobo, Luo, Cheng, Yao, Dezhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6978665/ https://www.ncbi.nlm.nih.gov/pubmed/32009894 http://dx.doi.org/10.3389/fnins.2019.01435 |
Ejemplares similares
-
Resting-state functional connectivity in anterior cingulate cortex in normal aging
por: Cao, Weifang, et al.
Publicado: (2014) -
Atypical Hierarchical Connectivity Revealed by Stepwise Functional Connectivity in Aging
por: Li, Hechun, et al.
Publicado: (2023) -
Voxel-wise Functional Connectivity of the Default Mode Network in Epilepsies: A Systematic Review and Meta-Analysis
por: Jiang, Sisi, et al.
Publicado: (2022) -
Causality Analysis to the Abnormal Subcortical–Cortical Connections in Idiopathic-Generalized Epilepsy
por: Qin, Yun, et al.
Publicado: (2022) -
Neuroscience Information Toolbox: An Open Source Toolbox for EEG–fMRI Multimodal Fusion Analysis
por: Dong, Li, et al.
Publicado: (2018)