Cargando…

Hydrodynamic Limit of Condensing Two-Species Zero Range Processes with Sub-critical Initial Profiles

Two-species condensing zero range processes (ZRPs) are interacting particle systems with two species of particles and zero range interaction exhibiting phase separation outside a domain of sub-critical densities. We prove the hydrodynamic limit of nearest neighbour mean zero two-species condensing Z...

Descripción completa

Detalles Bibliográficos
Autores principales: Dirr, Nicolas, Stamatakis, Marios G., Zimmer, Johannes
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6979527/
https://www.ncbi.nlm.nih.gov/pubmed/32025053
http://dx.doi.org/10.1007/s10955-017-1827-6
Descripción
Sumario:Two-species condensing zero range processes (ZRPs) are interacting particle systems with two species of particles and zero range interaction exhibiting phase separation outside a domain of sub-critical densities. We prove the hydrodynamic limit of nearest neighbour mean zero two-species condensing ZRP with bounded local jump rate for sub-critical initial profiles, i.e., for initial profiles whose image is contained in the region of sub-critical densities. The proof is based on H.T. Yau’s relative entropy method, which relies on the existence of sufficiently regular solutions to the hydrodynamic equation. In the particular case of the species-blind ZRP, we prove that the solutions of the hydrodynamic equation exist globally in time and thus the hydrodynamic limit is valid for all times.