Cargando…
Universal Completability, Least Eigenvalue Frameworks, and Vector Colorings
An embedding [Formula: see text] of the vertices of a graph G is called universally completable if the following holds: For any other embedding [Formula: see text] satisfying [Formula: see text] for [Formula: see text] and i adjacent to j, there exists an isometry mapping [Formula: see text] to [For...
Autores principales: | Godsil, Chris, Roberson, David E., Rooney, Brendan, Šámal, Robert, Varvitsiotis, Antonios |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6979529/ https://www.ncbi.nlm.nih.gov/pubmed/32025074 http://dx.doi.org/10.1007/s00454-017-9899-2 |
Ejemplares similares
-
Spectral generalizations of line graphs: on graphs with least eigenvalue -2
por: Cvetkovic, Dragoš, et al.
Publicado: (2004) -
Stable polefinding and rational least-squares fitting via eigenvalues
por: Ito, Shinji, et al.
Publicado: (2018) -
On the least signless Laplacian eigenvalue of a non-bipartite connected graph with fixed maximum degree
por: Guo, Shu-Guang, et al.
Publicado: (2017) -
Eigenvalues of the resistance-distance matrix of complete multipartite graphs
por: Das, Kinkar Chandra, et al.
Publicado: (2017) -
On computing eigenvalues of matrices with real eigenvalues by the secant method
por: Anderson, Ned
Publicado: (1975)