Cargando…
Real-Time Tracking of Single and Multiple Objects from Depth-Colour Imagery Using 3D Signed Distance Functions
We describe a novel probabilistic framework for real-time tracking of multiple objects from combined depth-colour imagery. Object shape is represented implicitly using 3D signed distance functions. Probabilistic generative models based on these functions are developed to account for the observed RGB...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6979537/ https://www.ncbi.nlm.nih.gov/pubmed/32025093 http://dx.doi.org/10.1007/s11263-016-0978-2 |
Sumario: | We describe a novel probabilistic framework for real-time tracking of multiple objects from combined depth-colour imagery. Object shape is represented implicitly using 3D signed distance functions. Probabilistic generative models based on these functions are developed to account for the observed RGB-D imagery, and tracking is posed as a maximum a posteriori problem. We present first a method suited to tracking a single rigid 3D object, and then generalise this to multiple objects by combining distance functions into a shape union in the frame of the camera. This second model accounts for similarity and proximity between objects, and leads to robust real-time tracking without recourse to bolt-on or ad-hoc collision detection. |
---|