Cargando…

Colour Helmholtz Stereopsis for Reconstruction of Dynamic Scenes with Arbitrary Unknown Reflectance

Helmholtz Stereopsis is a powerful technique for reconstruction of scenes with arbitrary reflectance properties. However, previous formulations have been limited to static objects due to the requirement to sequentially capture reciprocal image pairs (i.e. two images with the camera and light source...

Descripción completa

Detalles Bibliográficos
Autores principales: Roubtsova, Nadejda, Guillemaut, Jean-Yves
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6979544/
https://www.ncbi.nlm.nih.gov/pubmed/32025092
http://dx.doi.org/10.1007/s11263-016-0951-0
_version_ 1783490920690221056
author Roubtsova, Nadejda
Guillemaut, Jean-Yves
author_facet Roubtsova, Nadejda
Guillemaut, Jean-Yves
author_sort Roubtsova, Nadejda
collection PubMed
description Helmholtz Stereopsis is a powerful technique for reconstruction of scenes with arbitrary reflectance properties. However, previous formulations have been limited to static objects due to the requirement to sequentially capture reciprocal image pairs (i.e. two images with the camera and light source positions mutually interchanged). In this paper, we propose colour Helmholtz Stereopsis—a novel framework for Helmholtz Stereopsis based on wavelength multiplexing. To address the new set of challenges introduced by multispectral data acquisition, the proposed Colour Helmholtz Stereopsis pipeline uniquely combines a tailored photometric calibration for multiple camera/light source pairs, a novel procedure for spatio-temporal surface chromaticity calibration and a state-of-the-art Bayesian formulation necessary for accurate reconstruction from a minimal number of reciprocal pairs. In this framework, reflectance is spatially unconstrained both in terms of its chromaticity and the directional component dependent on the illumination incidence and viewing angles. The proposed approach for the first time enables modelling of dynamic scenes with arbitrary unknown and spatially varying reflectance using a practical acquisition set-up consisting of a small number of cameras and light sources. Experimental results demonstrate the accuracy and flexibility of the technique on a variety of static and dynamic scenes with arbitrary unknown BRDF and chromaticity ranging from uniform to arbitrary and spatially varying. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11263-016-0951-0) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6979544
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-69795442020-02-03 Colour Helmholtz Stereopsis for Reconstruction of Dynamic Scenes with Arbitrary Unknown Reflectance Roubtsova, Nadejda Guillemaut, Jean-Yves Int J Comput Vis Article Helmholtz Stereopsis is a powerful technique for reconstruction of scenes with arbitrary reflectance properties. However, previous formulations have been limited to static objects due to the requirement to sequentially capture reciprocal image pairs (i.e. two images with the camera and light source positions mutually interchanged). In this paper, we propose colour Helmholtz Stereopsis—a novel framework for Helmholtz Stereopsis based on wavelength multiplexing. To address the new set of challenges introduced by multispectral data acquisition, the proposed Colour Helmholtz Stereopsis pipeline uniquely combines a tailored photometric calibration for multiple camera/light source pairs, a novel procedure for spatio-temporal surface chromaticity calibration and a state-of-the-art Bayesian formulation necessary for accurate reconstruction from a minimal number of reciprocal pairs. In this framework, reflectance is spatially unconstrained both in terms of its chromaticity and the directional component dependent on the illumination incidence and viewing angles. The proposed approach for the first time enables modelling of dynamic scenes with arbitrary unknown and spatially varying reflectance using a practical acquisition set-up consisting of a small number of cameras and light sources. Experimental results demonstrate the accuracy and flexibility of the technique on a variety of static and dynamic scenes with arbitrary unknown BRDF and chromaticity ranging from uniform to arbitrary and spatially varying. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11263-016-0951-0) contains supplementary material, which is available to authorized users. Springer US 2016-09-20 2017 /pmc/articles/PMC6979544/ /pubmed/32025092 http://dx.doi.org/10.1007/s11263-016-0951-0 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Roubtsova, Nadejda
Guillemaut, Jean-Yves
Colour Helmholtz Stereopsis for Reconstruction of Dynamic Scenes with Arbitrary Unknown Reflectance
title Colour Helmholtz Stereopsis for Reconstruction of Dynamic Scenes with Arbitrary Unknown Reflectance
title_full Colour Helmholtz Stereopsis for Reconstruction of Dynamic Scenes with Arbitrary Unknown Reflectance
title_fullStr Colour Helmholtz Stereopsis for Reconstruction of Dynamic Scenes with Arbitrary Unknown Reflectance
title_full_unstemmed Colour Helmholtz Stereopsis for Reconstruction of Dynamic Scenes with Arbitrary Unknown Reflectance
title_short Colour Helmholtz Stereopsis for Reconstruction of Dynamic Scenes with Arbitrary Unknown Reflectance
title_sort colour helmholtz stereopsis for reconstruction of dynamic scenes with arbitrary unknown reflectance
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6979544/
https://www.ncbi.nlm.nih.gov/pubmed/32025092
http://dx.doi.org/10.1007/s11263-016-0951-0
work_keys_str_mv AT roubtsovanadejda colourhelmholtzstereopsisforreconstructionofdynamicsceneswitharbitraryunknownreflectance
AT guillemautjeanyves colourhelmholtzstereopsisforreconstructionofdynamicsceneswitharbitraryunknownreflectance