Cargando…

Microstructure and Electro-Physical Properties of Sn-3.0Ag-0.5Cu Nanocomposite Solder Reinforced with Ni Nanoparticles in the Melting-Solidification Temperature Range

The electrical conductivity of nanocomposite Sn-3.0Ag-0.5Cu alloys with two different weight percentages of Ni nanoparticles (1.0 and 2.0 wt.%) was measured over a wide temperature range. The samples were produced using a cold pressing method: Sn-3.0Ag-0.5Cu powder and Ni nanopowder were mechanicall...

Descripción completa

Detalles Bibliográficos
Autores principales: Yakymovych, A., Plevachuk, Yu., Sklyarchuk, V., Sokoliuk, B., Galya, T., Ipser, H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6979714/
https://www.ncbi.nlm.nih.gov/pubmed/32025225
http://dx.doi.org/10.1007/s11669-017-0532-0
Descripción
Sumario:The electrical conductivity of nanocomposite Sn-3.0Ag-0.5Cu alloys with two different weight percentages of Ni nanoparticles (1.0 and 2.0 wt.%) was measured over a wide temperature range. The samples were produced using a cold pressing method: Sn-3.0Ag-0.5Cu powder and Ni nanopowder were mechanically mixed and pressed into 8 mm diameter rods. Ni nanoparticles were synthesized via a chemical reduction method and characterized by a core/shell structure. Temperature dependencies of the electrical conductivity revealed a hysteresis between the heating and cooling curves in a wide temperature range above the melting temperature. This fact is connected with structure transformations accompanied by a dissolution of Ni nanoparticles, which should be retarded due to an oxide/hydroxide shell on the surface of the nanoparticles. A microstructure analysis of the samples in the solid state showed a fine distribution of intermetallic compounds in the Sn-based matrix. The Ni atoms substituted for Cu atoms in the Cu(6)Sn(5) compound forming a (Cu,Ni)(6)Sn(5) phase.