Cargando…
Integrating Computational Methods to Investigate the Macroecology of Microbiomes
Studies in microbiology have long been mostly restricted to small spatial scales. However, recent technological advances, such as new sequencing methodologies, have ushered an era of large-scale sequencing of environmental DNA data from multiple biomes worldwide. These global datasets can now be use...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6979972/ https://www.ncbi.nlm.nih.gov/pubmed/32010196 http://dx.doi.org/10.3389/fgene.2019.01344 |
_version_ | 1783490940550250496 |
---|---|
author | Mascarenhas, Rilquer Ruziska, Flávia M. Moreira, Eduardo Freitas Campos, Amanda B. Loiola, Miguel Reis, Kaike Trindade-Silva, Amaro E. Barbosa, Felipe A. S. Salles, Lucas Menezes, Rafael Veiga, Rafael Coutinho, Felipe H. Dutilh, Bas E. Guimarães, Paulo R. Assis, Ana Paula A. Ara, Anderson Miranda, José G. V. Andrade, Roberto F. S. Vilela, Bruno Meirelles, Pedro Milet |
author_facet | Mascarenhas, Rilquer Ruziska, Flávia M. Moreira, Eduardo Freitas Campos, Amanda B. Loiola, Miguel Reis, Kaike Trindade-Silva, Amaro E. Barbosa, Felipe A. S. Salles, Lucas Menezes, Rafael Veiga, Rafael Coutinho, Felipe H. Dutilh, Bas E. Guimarães, Paulo R. Assis, Ana Paula A. Ara, Anderson Miranda, José G. V. Andrade, Roberto F. S. Vilela, Bruno Meirelles, Pedro Milet |
author_sort | Mascarenhas, Rilquer |
collection | PubMed |
description | Studies in microbiology have long been mostly restricted to small spatial scales. However, recent technological advances, such as new sequencing methodologies, have ushered an era of large-scale sequencing of environmental DNA data from multiple biomes worldwide. These global datasets can now be used to explore long standing questions of microbial ecology. New methodological approaches and concepts are being developed to study such large-scale patterns in microbial communities, resulting in new perspectives that represent a significant advances for both microbiology and macroecology. Here, we identify and review important conceptual, computational, and methodological challenges and opportunities in microbial macroecology. Specifically, we discuss the challenges of handling and analyzing large amounts of microbiome data to understand taxa distribution and co-occurrence patterns. We also discuss approaches for modeling microbial communities based on environmental data, including information on biological interactions to make full use of available Big Data. Finally, we summarize the methods presented in a general approach aimed to aid microbiologists in addressing fundamental questions in microbial macroecology, including classical propositions (such as “everything is everywhere, but the environment selects”) as well as applied ecological problems, such as those posed by human induced global environmental changes. |
format | Online Article Text |
id | pubmed-6979972 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-69799722020-02-01 Integrating Computational Methods to Investigate the Macroecology of Microbiomes Mascarenhas, Rilquer Ruziska, Flávia M. Moreira, Eduardo Freitas Campos, Amanda B. Loiola, Miguel Reis, Kaike Trindade-Silva, Amaro E. Barbosa, Felipe A. S. Salles, Lucas Menezes, Rafael Veiga, Rafael Coutinho, Felipe H. Dutilh, Bas E. Guimarães, Paulo R. Assis, Ana Paula A. Ara, Anderson Miranda, José G. V. Andrade, Roberto F. S. Vilela, Bruno Meirelles, Pedro Milet Front Genet Genetics Studies in microbiology have long been mostly restricted to small spatial scales. However, recent technological advances, such as new sequencing methodologies, have ushered an era of large-scale sequencing of environmental DNA data from multiple biomes worldwide. These global datasets can now be used to explore long standing questions of microbial ecology. New methodological approaches and concepts are being developed to study such large-scale patterns in microbial communities, resulting in new perspectives that represent a significant advances for both microbiology and macroecology. Here, we identify and review important conceptual, computational, and methodological challenges and opportunities in microbial macroecology. Specifically, we discuss the challenges of handling and analyzing large amounts of microbiome data to understand taxa distribution and co-occurrence patterns. We also discuss approaches for modeling microbial communities based on environmental data, including information on biological interactions to make full use of available Big Data. Finally, we summarize the methods presented in a general approach aimed to aid microbiologists in addressing fundamental questions in microbial macroecology, including classical propositions (such as “everything is everywhere, but the environment selects”) as well as applied ecological problems, such as those posed by human induced global environmental changes. Frontiers Media S.A. 2020-01-17 /pmc/articles/PMC6979972/ /pubmed/32010196 http://dx.doi.org/10.3389/fgene.2019.01344 Text en Copyright © 2020 Mascarenhas, Ruziska, Moreira, Campos, Loiola, Reis, Trindade-Silva, Barbosa, Salles, Menezes, Veiga, Coutinho, Dutilh, Guimarães, Assis, Ara, Miranda, Andrade, Vilela and Meirelles http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Genetics Mascarenhas, Rilquer Ruziska, Flávia M. Moreira, Eduardo Freitas Campos, Amanda B. Loiola, Miguel Reis, Kaike Trindade-Silva, Amaro E. Barbosa, Felipe A. S. Salles, Lucas Menezes, Rafael Veiga, Rafael Coutinho, Felipe H. Dutilh, Bas E. Guimarães, Paulo R. Assis, Ana Paula A. Ara, Anderson Miranda, José G. V. Andrade, Roberto F. S. Vilela, Bruno Meirelles, Pedro Milet Integrating Computational Methods to Investigate the Macroecology of Microbiomes |
title | Integrating Computational Methods to Investigate the Macroecology of Microbiomes |
title_full | Integrating Computational Methods to Investigate the Macroecology of Microbiomes |
title_fullStr | Integrating Computational Methods to Investigate the Macroecology of Microbiomes |
title_full_unstemmed | Integrating Computational Methods to Investigate the Macroecology of Microbiomes |
title_short | Integrating Computational Methods to Investigate the Macroecology of Microbiomes |
title_sort | integrating computational methods to investigate the macroecology of microbiomes |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6979972/ https://www.ncbi.nlm.nih.gov/pubmed/32010196 http://dx.doi.org/10.3389/fgene.2019.01344 |
work_keys_str_mv | AT mascarenhasrilquer integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes AT ruziskaflaviam integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes AT moreiraeduardofreitas integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes AT camposamandab integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes AT loiolamiguel integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes AT reiskaike integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes AT trindadesilvaamaroe integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes AT barbosafelipeas integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes AT salleslucas integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes AT menezesrafael integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes AT veigarafael integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes AT coutinhofelipeh integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes AT dutilhbase integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes AT guimaraespaulor integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes AT assisanapaulaa integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes AT araanderson integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes AT mirandajosegv integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes AT andraderobertofs integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes AT vilelabruno integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes AT meirellespedromilet integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes |