Cargando…

Integrating Computational Methods to Investigate the Macroecology of Microbiomes

Studies in microbiology have long been mostly restricted to small spatial scales. However, recent technological advances, such as new sequencing methodologies, have ushered an era of large-scale sequencing of environmental DNA data from multiple biomes worldwide. These global datasets can now be use...

Descripción completa

Detalles Bibliográficos
Autores principales: Mascarenhas, Rilquer, Ruziska, Flávia M., Moreira, Eduardo Freitas, Campos, Amanda B., Loiola, Miguel, Reis, Kaike, Trindade-Silva, Amaro E., Barbosa, Felipe A. S., Salles, Lucas, Menezes, Rafael, Veiga, Rafael, Coutinho, Felipe H., Dutilh, Bas E., Guimarães, Paulo R., Assis, Ana Paula A., Ara, Anderson, Miranda, José G. V., Andrade, Roberto F. S., Vilela, Bruno, Meirelles, Pedro Milet
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6979972/
https://www.ncbi.nlm.nih.gov/pubmed/32010196
http://dx.doi.org/10.3389/fgene.2019.01344
_version_ 1783490940550250496
author Mascarenhas, Rilquer
Ruziska, Flávia M.
Moreira, Eduardo Freitas
Campos, Amanda B.
Loiola, Miguel
Reis, Kaike
Trindade-Silva, Amaro E.
Barbosa, Felipe A. S.
Salles, Lucas
Menezes, Rafael
Veiga, Rafael
Coutinho, Felipe H.
Dutilh, Bas E.
Guimarães, Paulo R.
Assis, Ana Paula A.
Ara, Anderson
Miranda, José G. V.
Andrade, Roberto F. S.
Vilela, Bruno
Meirelles, Pedro Milet
author_facet Mascarenhas, Rilquer
Ruziska, Flávia M.
Moreira, Eduardo Freitas
Campos, Amanda B.
Loiola, Miguel
Reis, Kaike
Trindade-Silva, Amaro E.
Barbosa, Felipe A. S.
Salles, Lucas
Menezes, Rafael
Veiga, Rafael
Coutinho, Felipe H.
Dutilh, Bas E.
Guimarães, Paulo R.
Assis, Ana Paula A.
Ara, Anderson
Miranda, José G. V.
Andrade, Roberto F. S.
Vilela, Bruno
Meirelles, Pedro Milet
author_sort Mascarenhas, Rilquer
collection PubMed
description Studies in microbiology have long been mostly restricted to small spatial scales. However, recent technological advances, such as new sequencing methodologies, have ushered an era of large-scale sequencing of environmental DNA data from multiple biomes worldwide. These global datasets can now be used to explore long standing questions of microbial ecology. New methodological approaches and concepts are being developed to study such large-scale patterns in microbial communities, resulting in new perspectives that represent a significant advances for both microbiology and macroecology. Here, we identify and review important conceptual, computational, and methodological challenges and opportunities in microbial macroecology. Specifically, we discuss the challenges of handling and analyzing large amounts of microbiome data to understand taxa distribution and co-occurrence patterns. We also discuss approaches for modeling microbial communities based on environmental data, including information on biological interactions to make full use of available Big Data. Finally, we summarize the methods presented in a general approach aimed to aid microbiologists in addressing fundamental questions in microbial macroecology, including classical propositions (such as “everything is everywhere, but the environment selects”) as well as applied ecological problems, such as those posed by human induced global environmental changes.
format Online
Article
Text
id pubmed-6979972
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-69799722020-02-01 Integrating Computational Methods to Investigate the Macroecology of Microbiomes Mascarenhas, Rilquer Ruziska, Flávia M. Moreira, Eduardo Freitas Campos, Amanda B. Loiola, Miguel Reis, Kaike Trindade-Silva, Amaro E. Barbosa, Felipe A. S. Salles, Lucas Menezes, Rafael Veiga, Rafael Coutinho, Felipe H. Dutilh, Bas E. Guimarães, Paulo R. Assis, Ana Paula A. Ara, Anderson Miranda, José G. V. Andrade, Roberto F. S. Vilela, Bruno Meirelles, Pedro Milet Front Genet Genetics Studies in microbiology have long been mostly restricted to small spatial scales. However, recent technological advances, such as new sequencing methodologies, have ushered an era of large-scale sequencing of environmental DNA data from multiple biomes worldwide. These global datasets can now be used to explore long standing questions of microbial ecology. New methodological approaches and concepts are being developed to study such large-scale patterns in microbial communities, resulting in new perspectives that represent a significant advances for both microbiology and macroecology. Here, we identify and review important conceptual, computational, and methodological challenges and opportunities in microbial macroecology. Specifically, we discuss the challenges of handling and analyzing large amounts of microbiome data to understand taxa distribution and co-occurrence patterns. We also discuss approaches for modeling microbial communities based on environmental data, including information on biological interactions to make full use of available Big Data. Finally, we summarize the methods presented in a general approach aimed to aid microbiologists in addressing fundamental questions in microbial macroecology, including classical propositions (such as “everything is everywhere, but the environment selects”) as well as applied ecological problems, such as those posed by human induced global environmental changes. Frontiers Media S.A. 2020-01-17 /pmc/articles/PMC6979972/ /pubmed/32010196 http://dx.doi.org/10.3389/fgene.2019.01344 Text en Copyright © 2020 Mascarenhas, Ruziska, Moreira, Campos, Loiola, Reis, Trindade-Silva, Barbosa, Salles, Menezes, Veiga, Coutinho, Dutilh, Guimarães, Assis, Ara, Miranda, Andrade, Vilela and Meirelles http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Genetics
Mascarenhas, Rilquer
Ruziska, Flávia M.
Moreira, Eduardo Freitas
Campos, Amanda B.
Loiola, Miguel
Reis, Kaike
Trindade-Silva, Amaro E.
Barbosa, Felipe A. S.
Salles, Lucas
Menezes, Rafael
Veiga, Rafael
Coutinho, Felipe H.
Dutilh, Bas E.
Guimarães, Paulo R.
Assis, Ana Paula A.
Ara, Anderson
Miranda, José G. V.
Andrade, Roberto F. S.
Vilela, Bruno
Meirelles, Pedro Milet
Integrating Computational Methods to Investigate the Macroecology of Microbiomes
title Integrating Computational Methods to Investigate the Macroecology of Microbiomes
title_full Integrating Computational Methods to Investigate the Macroecology of Microbiomes
title_fullStr Integrating Computational Methods to Investigate the Macroecology of Microbiomes
title_full_unstemmed Integrating Computational Methods to Investigate the Macroecology of Microbiomes
title_short Integrating Computational Methods to Investigate the Macroecology of Microbiomes
title_sort integrating computational methods to investigate the macroecology of microbiomes
topic Genetics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6979972/
https://www.ncbi.nlm.nih.gov/pubmed/32010196
http://dx.doi.org/10.3389/fgene.2019.01344
work_keys_str_mv AT mascarenhasrilquer integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes
AT ruziskaflaviam integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes
AT moreiraeduardofreitas integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes
AT camposamandab integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes
AT loiolamiguel integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes
AT reiskaike integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes
AT trindadesilvaamaroe integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes
AT barbosafelipeas integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes
AT salleslucas integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes
AT menezesrafael integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes
AT veigarafael integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes
AT coutinhofelipeh integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes
AT dutilhbase integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes
AT guimaraespaulor integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes
AT assisanapaulaa integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes
AT araanderson integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes
AT mirandajosegv integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes
AT andraderobertofs integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes
AT vilelabruno integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes
AT meirellespedromilet integratingcomputationalmethodstoinvestigatethemacroecologyofmicrobiomes