Cargando…
Exponential random graph model parameter estimation for very large directed networks
Exponential random graph models (ERGMs) are widely used for modeling social networks observed at one point in time. However the computational difficulty of ERGM parameter estimation has limited the practical application of this class of models to relatively small networks, up to a few thousand nodes...
Autores principales: | Stivala, Alex, Robins, Garry, Lomi, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6980401/ https://www.ncbi.nlm.nih.gov/pubmed/31978150 http://dx.doi.org/10.1371/journal.pone.0227804 |
Ejemplares similares
-
Testing biological network motif significance with exponential random graph models
por: Stivala, Alex, et al.
Publicado: (2021) -
Correction: Exponential random graph model parameter estimation for very large directed networks
Publicado: (2020) -
Fast Maximum Likelihood Estimation via Equilibrium Expectation for Large Network Data
por: Byshkin, Maksym, et al.
Publicado: (2018) -
A Simulation Study Comparing Epidemic Dynamics on Exponential Random Graph and Edge-Triangle Configuration Type Contact Network Models
por: Rolls, David A., et al.
Publicado: (2015) -
Exponential Random Graph Modeling for Complex Brain Networks
por: Simpson, Sean L., et al.
Publicado: (2011)