Cargando…
Is it time to stop sweeping data cleaning under the carpet? A novel algorithm for outlier management in growth data
All data are prone to error and require data cleaning prior to analysis. An important example is longitudinal growth data, for which there are no universally agreed standard methods for identifying and removing implausible values and many existing methods have limitations that restrict their usage a...
Autores principales: | Woolley, Charlotte S. C., Handel, Ian G., Bronsvoort, B. Mark, Schoenebeck, Jeffrey J., Clements, Dylan N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6980495/ https://www.ncbi.nlm.nih.gov/pubmed/31978151 http://dx.doi.org/10.1371/journal.pone.0228154 |
Ejemplares similares
-
The impact of the COVID-19 pandemic on a cohort of Labrador retrievers in England
por: Woolley, Charlotte S. C., et al.
Publicado: (2022) -
Complications in Cosmetic Surgery: A Time to Reflect and Review and not Sweep Them Under the Carpet
por: Khunger, Niti
Publicado: (2015) -
To clean or not to clean phenotypic datasets for outlier plants in genetic analyses?
por: Alvarez Prado, Santiago, et al.
Publicado: (2019) -
An Efficient Algorithm for the Detection of Outliers in Mislabeled Omics Data
por: Sun, Hongwei, et al.
Publicado: (2021) -
Soft selective sweeps: Addressing new definitions, evaluating competing models, and interpreting empirical outliers
por: Johri, Parul, et al.
Publicado: (2022)