Cargando…
Improved multi-parametric prediction of tissue outcome in acute ischemic stroke patients using spatial features
INTRODUCTION: In recent years, numerous methods have been proposed to predict tissue outcome in acute stroke patients using machine learning methods incorporating multiparametric imaging data. Most methods include diffusion and perfusion parameters as image-based parameters but do not include any sp...
Autores principales: | Grosser, Malte, Gellißen, Susanne, Borchert, Patrick, Sedlacik, Jan, Nawabi, Jawed, Fiehler, Jens, Forkert, Nils Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6980585/ https://www.ncbi.nlm.nih.gov/pubmed/31978179 http://dx.doi.org/10.1371/journal.pone.0228113 |
Ejemplares similares
-
Correction: Improved multi-parametric prediction of tissue outcome in acute ischemic stroke patients using spatial features
por: Grosser, Malte, et al.
Publicado: (2020) -
Localized prediction of tissue outcome in acute ischemic stroke patients using diffusion- and perfusion-weighted MRI datasets
por: Grosser, Malte, et al.
Publicado: (2020) -
Technical considerations of multi-parametric tissue outcome prediction methods in acute ischemic stroke patients
por: Winder, Anthony J., et al.
Publicado: (2019) -
Effect of geometric distortion correction on thickness and volume measurements of cortical parcellations in 3D T1w gradient echo sequences
por: Thaler, Christian, et al.
Publicado: (2023) -
CT-perfusion stroke imaging: a threshold free probabilistic approach to predict infarct volume compared to traditional ischemic thresholds
por: Flottmann, Fabian, et al.
Publicado: (2017)