Cargando…
Performance of Qure.ai automatic classifiers against a large annotated database of patients with diverse forms of tuberculosis
Availability of trained radiologists for fast processing of CXRs in regions burdened with tuberculosis always has been a challenge, affecting both timely diagnosis and patient monitoring. The paucity of annotated images of lungs of TB patients hampers attempts to apply data-oriented algorithms for r...
Autores principales: | Engle, Eric, Gabrielian, Andrei, Long, Alyssa, Hurt, Darrell E., Rosenthal, Alex |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6980594/ https://www.ncbi.nlm.nih.gov/pubmed/31978149 http://dx.doi.org/10.1371/journal.pone.0224445 |
Ejemplares similares
-
Radiologist observations of computed tomography (CT) images predict treatment outcome in TB Portals, a real-world database of tuberculosis (TB) cases
por: Rosenfeld, Gabriel, et al.
Publicado: (2021) -
Predictive capabilities of baseline radiological findings for early and late disease outcomes within sensitive and multi-drug resistant tuberculosis cases
por: Rosenfeld, Gabriel, et al.
Publicado: (2023) -
TB DEPOT (Data Exploration Portal): A multi-domain tuberculosis data analysis resource
por: Gabrielian, Andrei, et al.
Publicado: (2019) -
The technology behind TB DEPOT: a novel public analytics platform
integrating tuberculosis clinical, genomic, and radiological data for visual and
statistical exploration
por: Long, Alyssa, et al.
Publicado: (2020) -
A retrospective genomic analysis of drug-resistant strains of M. tuberculosis in a high-burden setting, with an emphasis on comparative diagnostics and reactivation and reinfection status
por: Wollenberg, Kurt, et al.
Publicado: (2020)