Cargando…

Non-Invasive Functional-Brain-Imaging with an OPM-based Magnetoencephalography System

A non-invasive functional-brain-imaging system based on optically-pumped-magnetometers (OPM) is presented. The OPM-based magnetoencephalography (MEG) system features 20 OPM channels conforming to the subject’s scalp. We have conducted two MEG experiments on three subjects: assessment of somatosensor...

Descripción completa

Detalles Bibliográficos
Autores principales: Borna, Amir, Carter, Tony R., Colombo, Anthony P., Jau, Yuan-Yu, McKay, Jim, Weisend, Michael, Taulu, Samu, Stephen, Julia M., Schwindt, Peter D. D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6980641/
https://www.ncbi.nlm.nih.gov/pubmed/31978102
http://dx.doi.org/10.1371/journal.pone.0227684
Descripción
Sumario:A non-invasive functional-brain-imaging system based on optically-pumped-magnetometers (OPM) is presented. The OPM-based magnetoencephalography (MEG) system features 20 OPM channels conforming to the subject’s scalp. We have conducted two MEG experiments on three subjects: assessment of somatosensory evoked magnetic field (SEF) and auditory evoked magnetic field (AEF) using our OPM-based MEG system and a commercial MEG system based on superconducting quantum interference devices (SQUIDs). We cross validated the robustness of our system by calculating the distance between the location of the equivalent current dipole (ECD) yielded by our OPM-based MEG system and the ECD location calculated by the commercial SQUID-based MEG system. We achieved sub-centimeter accuracy for both SEF and AEF responses in all three subjects. Due to the proximity (12 mm) of the OPM channels to the scalp, it is anticipated that future OPM-based MEG systems will offer enhanced spatial resolution as they will capture finer spatial features compared to traditional MEG systems employing SQUIDs.