Cargando…
NORAD accelerates chemo-resistance of non-small-cell lung cancer via targeting at miR-129-1-3p/SOX4 axis
Substantial researches indicated that long non-coding RNAs (lncRNAs) exerted profound effects on chemo-resistance in cancer treatment. Nonetheless, the role of NORAD in non-small-cell lung cancer (NSCLC) remains unclear. In the present study, we chose NSCLC cell lines H446 and A549 to explore the fu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981097/ https://www.ncbi.nlm.nih.gov/pubmed/31894841 http://dx.doi.org/10.1042/BSR20193489 |
Sumario: | Substantial researches indicated that long non-coding RNAs (lncRNAs) exerted profound effects on chemo-resistance in cancer treatment. Nonetheless, the role of NORAD in non-small-cell lung cancer (NSCLC) remains unclear. In the present study, we chose NSCLC cell lines H446 and A549 to explore the function of non-coding RNA activated damage (NORAD) in response to cisplatin (DDP) resistance of NSCLC. Experimental data manifested that NORAD was up-regulated in DDP-resistant NSCLC tissues and cells. NSCLC patients with high NORAD expression suffered a poor prognosis. NORAD knockdown resensitized H446/DDP and A549/DDP to DDP. Besides, NORAD acted as a molecular sponge of miR-129-1-3p. MiR-129-1-3p showed a low level of expression in DDP-resistant NSCLC tissues. Moreover, miR-129-1-3p overexpression impaired DDP resistance in H446/DDP and A549/DDP cells. SOX4 was the downstream target of miR-129-1-3p. Especially, SOX4 overexpression offset the effects of NORAD silence on H446/DDP and A549/DDP cells resistance to DDP. NORAD knockdown resensitized H446/DDP and A549/DDP to DDP in NSCLC via targeting miR-129-1-3p/SOX4 axis, offering a brand-new target for NSCLC chemo-resistance. |
---|