Cargando…

The Technome - A Predictive Internal Calibration Approach for Quantitative Imaging Biomarker Research

The goal of radiomics is to convert medical images into a minable data space by extraction of quantitative imaging features for clinically relevant analyses, e.g. survival time prediction of a patient. One problem of radiomics from computed tomography is the impact of technical variation such as rec...

Descripción completa

Detalles Bibliográficos
Autores principales: Mühlberg, Alexander, Katzmann, Alexander, Heinemann, Volker, Kärgel, Rainer, Wels, Michael, Taubmann, Oliver, Lades, Félix, Huber, Thomas, Maurus, Stefan, Holch, Julian, Faivre, Jean-Baptiste, Sühling, Michael, Nörenberg, Dominik, Rémy-Jardin, Martine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981189/
https://www.ncbi.nlm.nih.gov/pubmed/31980635
http://dx.doi.org/10.1038/s41598-019-57325-7
_version_ 1783491036685795328
author Mühlberg, Alexander
Katzmann, Alexander
Heinemann, Volker
Kärgel, Rainer
Wels, Michael
Taubmann, Oliver
Lades, Félix
Huber, Thomas
Maurus, Stefan
Holch, Julian
Faivre, Jean-Baptiste
Sühling, Michael
Nörenberg, Dominik
Rémy-Jardin, Martine
author_facet Mühlberg, Alexander
Katzmann, Alexander
Heinemann, Volker
Kärgel, Rainer
Wels, Michael
Taubmann, Oliver
Lades, Félix
Huber, Thomas
Maurus, Stefan
Holch, Julian
Faivre, Jean-Baptiste
Sühling, Michael
Nörenberg, Dominik
Rémy-Jardin, Martine
author_sort Mühlberg, Alexander
collection PubMed
description The goal of radiomics is to convert medical images into a minable data space by extraction of quantitative imaging features for clinically relevant analyses, e.g. survival time prediction of a patient. One problem of radiomics from computed tomography is the impact of technical variation such as reconstruction kernel variation within a study. Additionally, what is often neglected is the impact of inter-patient technical variation, resulting from patient characteristics, even when scan and reconstruction parameters are constant. In our approach, measurements within 3D regions-of-interests (ROI) are calibrated by further ROIs such as air, adipose tissue, liver, etc. that are used as control regions (CR). Our goal is to derive general rules for an automated internal calibration that enhance prediction, based on the analysed features and a set of CRs. We define qualification criteria motivated by status-quo radiomics stability analysis techniques to only collect information from the CRs which is relevant given a respective task. These criteria are used in an optimisation to automatically derive a suitable internal calibration for prediction tasks based on the CRs. Our calibration enhanced the performance for centrilobular emphysema prediction in a COPD study and prediction of patients’ one-year-survival in an oncological study.
format Online
Article
Text
id pubmed-6981189
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-69811892020-01-30 The Technome - A Predictive Internal Calibration Approach for Quantitative Imaging Biomarker Research Mühlberg, Alexander Katzmann, Alexander Heinemann, Volker Kärgel, Rainer Wels, Michael Taubmann, Oliver Lades, Félix Huber, Thomas Maurus, Stefan Holch, Julian Faivre, Jean-Baptiste Sühling, Michael Nörenberg, Dominik Rémy-Jardin, Martine Sci Rep Article The goal of radiomics is to convert medical images into a minable data space by extraction of quantitative imaging features for clinically relevant analyses, e.g. survival time prediction of a patient. One problem of radiomics from computed tomography is the impact of technical variation such as reconstruction kernel variation within a study. Additionally, what is often neglected is the impact of inter-patient technical variation, resulting from patient characteristics, even when scan and reconstruction parameters are constant. In our approach, measurements within 3D regions-of-interests (ROI) are calibrated by further ROIs such as air, adipose tissue, liver, etc. that are used as control regions (CR). Our goal is to derive general rules for an automated internal calibration that enhance prediction, based on the analysed features and a set of CRs. We define qualification criteria motivated by status-quo radiomics stability analysis techniques to only collect information from the CRs which is relevant given a respective task. These criteria are used in an optimisation to automatically derive a suitable internal calibration for prediction tasks based on the CRs. Our calibration enhanced the performance for centrilobular emphysema prediction in a COPD study and prediction of patients’ one-year-survival in an oncological study. Nature Publishing Group UK 2020-01-24 /pmc/articles/PMC6981189/ /pubmed/31980635 http://dx.doi.org/10.1038/s41598-019-57325-7 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Mühlberg, Alexander
Katzmann, Alexander
Heinemann, Volker
Kärgel, Rainer
Wels, Michael
Taubmann, Oliver
Lades, Félix
Huber, Thomas
Maurus, Stefan
Holch, Julian
Faivre, Jean-Baptiste
Sühling, Michael
Nörenberg, Dominik
Rémy-Jardin, Martine
The Technome - A Predictive Internal Calibration Approach for Quantitative Imaging Biomarker Research
title The Technome - A Predictive Internal Calibration Approach for Quantitative Imaging Biomarker Research
title_full The Technome - A Predictive Internal Calibration Approach for Quantitative Imaging Biomarker Research
title_fullStr The Technome - A Predictive Internal Calibration Approach for Quantitative Imaging Biomarker Research
title_full_unstemmed The Technome - A Predictive Internal Calibration Approach for Quantitative Imaging Biomarker Research
title_short The Technome - A Predictive Internal Calibration Approach for Quantitative Imaging Biomarker Research
title_sort technome - a predictive internal calibration approach for quantitative imaging biomarker research
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981189/
https://www.ncbi.nlm.nih.gov/pubmed/31980635
http://dx.doi.org/10.1038/s41598-019-57325-7
work_keys_str_mv AT muhlbergalexander thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT katzmannalexander thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT heinemannvolker thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT kargelrainer thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT welsmichael thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT taubmannoliver thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT ladesfelix thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT huberthomas thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT maurusstefan thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT holchjulian thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT faivrejeanbaptiste thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT suhlingmichael thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT norenbergdominik thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT remyjardinmartine thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT muhlbergalexander technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT katzmannalexander technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT heinemannvolker technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT kargelrainer technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT welsmichael technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT taubmannoliver technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT ladesfelix technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT huberthomas technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT maurusstefan technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT holchjulian technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT faivrejeanbaptiste technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT suhlingmichael technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT norenbergdominik technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch
AT remyjardinmartine technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch