Cargando…
The Technome - A Predictive Internal Calibration Approach for Quantitative Imaging Biomarker Research
The goal of radiomics is to convert medical images into a minable data space by extraction of quantitative imaging features for clinically relevant analyses, e.g. survival time prediction of a patient. One problem of radiomics from computed tomography is the impact of technical variation such as rec...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981189/ https://www.ncbi.nlm.nih.gov/pubmed/31980635 http://dx.doi.org/10.1038/s41598-019-57325-7 |
_version_ | 1783491036685795328 |
---|---|
author | Mühlberg, Alexander Katzmann, Alexander Heinemann, Volker Kärgel, Rainer Wels, Michael Taubmann, Oliver Lades, Félix Huber, Thomas Maurus, Stefan Holch, Julian Faivre, Jean-Baptiste Sühling, Michael Nörenberg, Dominik Rémy-Jardin, Martine |
author_facet | Mühlberg, Alexander Katzmann, Alexander Heinemann, Volker Kärgel, Rainer Wels, Michael Taubmann, Oliver Lades, Félix Huber, Thomas Maurus, Stefan Holch, Julian Faivre, Jean-Baptiste Sühling, Michael Nörenberg, Dominik Rémy-Jardin, Martine |
author_sort | Mühlberg, Alexander |
collection | PubMed |
description | The goal of radiomics is to convert medical images into a minable data space by extraction of quantitative imaging features for clinically relevant analyses, e.g. survival time prediction of a patient. One problem of radiomics from computed tomography is the impact of technical variation such as reconstruction kernel variation within a study. Additionally, what is often neglected is the impact of inter-patient technical variation, resulting from patient characteristics, even when scan and reconstruction parameters are constant. In our approach, measurements within 3D regions-of-interests (ROI) are calibrated by further ROIs such as air, adipose tissue, liver, etc. that are used as control regions (CR). Our goal is to derive general rules for an automated internal calibration that enhance prediction, based on the analysed features and a set of CRs. We define qualification criteria motivated by status-quo radiomics stability analysis techniques to only collect information from the CRs which is relevant given a respective task. These criteria are used in an optimisation to automatically derive a suitable internal calibration for prediction tasks based on the CRs. Our calibration enhanced the performance for centrilobular emphysema prediction in a COPD study and prediction of patients’ one-year-survival in an oncological study. |
format | Online Article Text |
id | pubmed-6981189 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-69811892020-01-30 The Technome - A Predictive Internal Calibration Approach for Quantitative Imaging Biomarker Research Mühlberg, Alexander Katzmann, Alexander Heinemann, Volker Kärgel, Rainer Wels, Michael Taubmann, Oliver Lades, Félix Huber, Thomas Maurus, Stefan Holch, Julian Faivre, Jean-Baptiste Sühling, Michael Nörenberg, Dominik Rémy-Jardin, Martine Sci Rep Article The goal of radiomics is to convert medical images into a minable data space by extraction of quantitative imaging features for clinically relevant analyses, e.g. survival time prediction of a patient. One problem of radiomics from computed tomography is the impact of technical variation such as reconstruction kernel variation within a study. Additionally, what is often neglected is the impact of inter-patient technical variation, resulting from patient characteristics, even when scan and reconstruction parameters are constant. In our approach, measurements within 3D regions-of-interests (ROI) are calibrated by further ROIs such as air, adipose tissue, liver, etc. that are used as control regions (CR). Our goal is to derive general rules for an automated internal calibration that enhance prediction, based on the analysed features and a set of CRs. We define qualification criteria motivated by status-quo radiomics stability analysis techniques to only collect information from the CRs which is relevant given a respective task. These criteria are used in an optimisation to automatically derive a suitable internal calibration for prediction tasks based on the CRs. Our calibration enhanced the performance for centrilobular emphysema prediction in a COPD study and prediction of patients’ one-year-survival in an oncological study. Nature Publishing Group UK 2020-01-24 /pmc/articles/PMC6981189/ /pubmed/31980635 http://dx.doi.org/10.1038/s41598-019-57325-7 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Mühlberg, Alexander Katzmann, Alexander Heinemann, Volker Kärgel, Rainer Wels, Michael Taubmann, Oliver Lades, Félix Huber, Thomas Maurus, Stefan Holch, Julian Faivre, Jean-Baptiste Sühling, Michael Nörenberg, Dominik Rémy-Jardin, Martine The Technome - A Predictive Internal Calibration Approach for Quantitative Imaging Biomarker Research |
title | The Technome - A Predictive Internal Calibration Approach for Quantitative Imaging Biomarker Research |
title_full | The Technome - A Predictive Internal Calibration Approach for Quantitative Imaging Biomarker Research |
title_fullStr | The Technome - A Predictive Internal Calibration Approach for Quantitative Imaging Biomarker Research |
title_full_unstemmed | The Technome - A Predictive Internal Calibration Approach for Quantitative Imaging Biomarker Research |
title_short | The Technome - A Predictive Internal Calibration Approach for Quantitative Imaging Biomarker Research |
title_sort | technome - a predictive internal calibration approach for quantitative imaging biomarker research |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981189/ https://www.ncbi.nlm.nih.gov/pubmed/31980635 http://dx.doi.org/10.1038/s41598-019-57325-7 |
work_keys_str_mv | AT muhlbergalexander thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT katzmannalexander thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT heinemannvolker thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT kargelrainer thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT welsmichael thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT taubmannoliver thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT ladesfelix thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT huberthomas thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT maurusstefan thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT holchjulian thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT faivrejeanbaptiste thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT suhlingmichael thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT norenbergdominik thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT remyjardinmartine thetechnomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT muhlbergalexander technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT katzmannalexander technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT heinemannvolker technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT kargelrainer technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT welsmichael technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT taubmannoliver technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT ladesfelix technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT huberthomas technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT maurusstefan technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT holchjulian technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT faivrejeanbaptiste technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT suhlingmichael technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT norenbergdominik technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch AT remyjardinmartine technomeapredictiveinternalcalibrationapproachforquantitativeimagingbiomarkerresearch |