Cargando…
Benchmarking Deep Learning Architectures for Predicting Readmission to the ICU and Describing Patients-at-Risk
To compare different deep learning architectures for predicting the risk of readmission within 30 days of discharge from the intensive care unit (ICU). The interpretability of attention-based models is leveraged to describe patients-at-risk. Several deep learning architectures making use of attentio...
Autores principales: | Barbieri, Sebastiano, Kemp, James, Perez-Concha, Oscar, Kotwal, Sradha, Gallagher, Martin, Ritchie, Angus, Jorm, Louisa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981230/ https://www.ncbi.nlm.nih.gov/pubmed/31980704 http://dx.doi.org/10.1038/s41598-020-58053-z |
Ejemplares similares
-
The relationship between hyperglycaemia on admission and patient outcome is modified by hyperlactatemia and diabetic status: a retrospective analysis of the eICU collaborative research database
por: Fitzgerald, Oisin, et al.
Publicado: (2023) -
Incorporating real-world evidence into the development of patient blood glucose prediction algorithms for the ICU
por: Fitzgerald, Oisin, et al.
Publicado: (2021) -
Travel times to hospitals in Australia
por: Barbieri, Sebastiano, et al.
Publicado: (2019) -
Web-Based Application Based on Human-in-the-Loop Deep Learning for Deidentifying Free-Text Data in Electronic Medical Records: Development and Usability Study
por: Liu, Leibo, et al.
Publicado: (2023) -
ICU readmission: good or bad?
por: Potter, E, et al.
Publicado: (2011)