Cargando…

Controllable unidirectional transport and light trapping using a one-dimensional lattice with non-Hermitian coupling

We propose a one-dimensional tight-binding lattice with special non-Hermitian coupling, the imaginary part of which is modulated by an effective Peierls phase arising from the synthetic magnetic field. Such a non-Hermitian lattice supports robust unidirectional transport that is reflectionless and i...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Lei, Zhang, Yan, Wu, Jin-Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981244/
https://www.ncbi.nlm.nih.gov/pubmed/31980668
http://dx.doi.org/10.1038/s41598-020-58018-2
Descripción
Sumario:We propose a one-dimensional tight-binding lattice with special non-Hermitian coupling, the imaginary part of which is modulated by an effective Peierls phase arising from the synthetic magnetic field. Such a non-Hermitian lattice supports robust unidirectional transport that is reflectionless and immune to defects; it thus can serve as a frequency-selectable light filter. To achieve more applications, we further construct two well-designed structures involving this lattice, namely a heterostructure and a sandwich structure. An optical diode can be realized using the heterostructure, while tunable light trapping and reversal can be realized through phase modulations on the sandwich structure. The results in this paper may not only open up a new path for unconventional light transport but also have potential applications for optical communication.