Cargando…
Characterization of a Maltase from an Early-Diverged Non-Conventional Yeast Blastobotrys adeninivorans
Genome of an early-diverged yeast Blastobotrys (Arxula) adeninivorans (Ba) encodes 88 glycoside hydrolases (GHs) including two α-glucosidases of GH13 family. One of those, the rna_ARAD1D20130g-encoded protein (BaAG2; 581 aa) was overexpressed in Escherichia coli, purified and characterized. We showe...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981392/ https://www.ncbi.nlm.nih.gov/pubmed/31906253 http://dx.doi.org/10.3390/ijms21010297 |
_version_ | 1783491069295460352 |
---|---|
author | Visnapuu, Triinu Meldre, Aivar Põšnograjeva, Kristina Viigand, Katrin Ernits, Karin Alamäe, Tiina |
author_facet | Visnapuu, Triinu Meldre, Aivar Põšnograjeva, Kristina Viigand, Katrin Ernits, Karin Alamäe, Tiina |
author_sort | Visnapuu, Triinu |
collection | PubMed |
description | Genome of an early-diverged yeast Blastobotrys (Arxula) adeninivorans (Ba) encodes 88 glycoside hydrolases (GHs) including two α-glucosidases of GH13 family. One of those, the rna_ARAD1D20130g-encoded protein (BaAG2; 581 aa) was overexpressed in Escherichia coli, purified and characterized. We showed that maltose, other maltose-like substrates (maltulose, turanose, maltotriose, melezitose, malto-oligosaccharides of DP 4‒7) and sucrose were hydrolyzed by BaAG2, whereas isomaltose and isomaltose-like substrates (palatinose, α-methylglucoside) were not, confirming that BaAG2 is a maltase. BaAG2 was competitively inhibited by a diabetes drug acarbose (K(i) = 0.8 µM) and Tris (K(i) = 70.5 µM). BaAG2 was competitively inhibited also by isomaltose-like sugars and a hydrolysis product—glucose. At high maltose concentrations, BaAG2 exhibited transglycosylating ability producing potentially prebiotic di- and trisaccharides. Atypically for yeast maltases, a low but clearly recordable exo-hydrolytic activity on amylose, amylopectin and glycogen was detected. Saccharomyces cerevisiae maltase MAL62, studied for comparison, had only minimal ability to hydrolyze these polymers, and its transglycosylating activity was about three times lower compared to BaAG2. Sequence identity of BaAG2 with other maltases was only moderate being the highest (51%) with the maltase MalT of Aspergillus oryzae. |
format | Online Article Text |
id | pubmed-6981392 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69813922020-02-07 Characterization of a Maltase from an Early-Diverged Non-Conventional Yeast Blastobotrys adeninivorans Visnapuu, Triinu Meldre, Aivar Põšnograjeva, Kristina Viigand, Katrin Ernits, Karin Alamäe, Tiina Int J Mol Sci Article Genome of an early-diverged yeast Blastobotrys (Arxula) adeninivorans (Ba) encodes 88 glycoside hydrolases (GHs) including two α-glucosidases of GH13 family. One of those, the rna_ARAD1D20130g-encoded protein (BaAG2; 581 aa) was overexpressed in Escherichia coli, purified and characterized. We showed that maltose, other maltose-like substrates (maltulose, turanose, maltotriose, melezitose, malto-oligosaccharides of DP 4‒7) and sucrose were hydrolyzed by BaAG2, whereas isomaltose and isomaltose-like substrates (palatinose, α-methylglucoside) were not, confirming that BaAG2 is a maltase. BaAG2 was competitively inhibited by a diabetes drug acarbose (K(i) = 0.8 µM) and Tris (K(i) = 70.5 µM). BaAG2 was competitively inhibited also by isomaltose-like sugars and a hydrolysis product—glucose. At high maltose concentrations, BaAG2 exhibited transglycosylating ability producing potentially prebiotic di- and trisaccharides. Atypically for yeast maltases, a low but clearly recordable exo-hydrolytic activity on amylose, amylopectin and glycogen was detected. Saccharomyces cerevisiae maltase MAL62, studied for comparison, had only minimal ability to hydrolyze these polymers, and its transglycosylating activity was about three times lower compared to BaAG2. Sequence identity of BaAG2 with other maltases was only moderate being the highest (51%) with the maltase MalT of Aspergillus oryzae. MDPI 2019-12-31 /pmc/articles/PMC6981392/ /pubmed/31906253 http://dx.doi.org/10.3390/ijms21010297 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Visnapuu, Triinu Meldre, Aivar Põšnograjeva, Kristina Viigand, Katrin Ernits, Karin Alamäe, Tiina Characterization of a Maltase from an Early-Diverged Non-Conventional Yeast Blastobotrys adeninivorans |
title | Characterization of a Maltase from an Early-Diverged Non-Conventional Yeast Blastobotrys adeninivorans |
title_full | Characterization of a Maltase from an Early-Diverged Non-Conventional Yeast Blastobotrys adeninivorans |
title_fullStr | Characterization of a Maltase from an Early-Diverged Non-Conventional Yeast Blastobotrys adeninivorans |
title_full_unstemmed | Characterization of a Maltase from an Early-Diverged Non-Conventional Yeast Blastobotrys adeninivorans |
title_short | Characterization of a Maltase from an Early-Diverged Non-Conventional Yeast Blastobotrys adeninivorans |
title_sort | characterization of a maltase from an early-diverged non-conventional yeast blastobotrys adeninivorans |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981392/ https://www.ncbi.nlm.nih.gov/pubmed/31906253 http://dx.doi.org/10.3390/ijms21010297 |
work_keys_str_mv | AT visnapuutriinu characterizationofamaltasefromanearlydivergednonconventionalyeastblastobotrysadeninivorans AT meldreaivar characterizationofamaltasefromanearlydivergednonconventionalyeastblastobotrysadeninivorans AT posnograjevakristina characterizationofamaltasefromanearlydivergednonconventionalyeastblastobotrysadeninivorans AT viigandkatrin characterizationofamaltasefromanearlydivergednonconventionalyeastblastobotrysadeninivorans AT ernitskarin characterizationofamaltasefromanearlydivergednonconventionalyeastblastobotrysadeninivorans AT alamaetiina characterizationofamaltasefromanearlydivergednonconventionalyeastblastobotrysadeninivorans |