Cargando…
In-situ Deposition of Graphene Oxide Catalyst for Efficient Photoelectrochemical Hydrogen Evolution Reaction Using Atmospheric Plasma
The vacuum deposition method requires high energy and temperature. Hydrophobic reduced graphene oxide (rGO) can be obtained by plasma-enhanced chemical vapor deposition under atmospheric pressure, which shows the hydrophobic surface property. Further, to compare the effect of hydrophobic and the hyd...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981421/ https://www.ncbi.nlm.nih.gov/pubmed/31861397 http://dx.doi.org/10.3390/ma13010012 |
Sumario: | The vacuum deposition method requires high energy and temperature. Hydrophobic reduced graphene oxide (rGO) can be obtained by plasma-enhanced chemical vapor deposition under atmospheric pressure, which shows the hydrophobic surface property. Further, to compare the effect of hydrophobic and the hydrophilic nature of catalysts in the photoelectrochemical cell (PEC), the prepared rGO was additionally treated with plasma that attaches oxygen functional groups effectively to obtain hydrophilic graphene oxide (GO). The hydrogen evolution reaction (HER) electrocatalytic activity of the hydrophobic rGO and hydrophilic GO deposited on the p-type Si wafer was analyzed. Herein, we have proposed a facile way to directly deposit the surface property engineered GO. |
---|