Cargando…
First-Principles Calculations of Oxygen-Dislocation Interaction in Magnesium
The interaction between interstitial oxygen atoms and <a>-type screw dislocations was investigated via first-principles calculations to elucidate the effect of oxygen solutes on the deformation behaviors of Mg. The results show that repulsive interactions exist between basal screw dislocation...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981448/ https://www.ncbi.nlm.nih.gov/pubmed/31887975 http://dx.doi.org/10.3390/ma13010116 |
Sumario: | The interaction between interstitial oxygen atoms and <a>-type screw dislocations was investigated via first-principles calculations to elucidate the effect of oxygen solutes on the deformation behaviors of Mg. The results show that repulsive interactions exist between basal screw dislocation cores and oxygen atoms, which would enable the full basal dislocation to bypass the oxygen atoms in the dislocation glide plane through the cross-slip process. This repulsion also increases the resistance to the motion of dissociated basal dislocations. Moreover, the energy of prismatic <a>-type screw dislocation cores is reduced by the presence of oxygen, which would stabilize the screw dislocation core on the prismatic plane, accordingly facilitating the prismatic slip. This information can complement the fundamental knowledge of alloying Mg using interstitial solutes. |
---|