Cargando…

Surface Morphology of the Interface Junction of CVD Mosaic Single-Crystal Diamond

The diamond mosaic grown on the single-crystal diamond substrates by the microwave plasma chemical vapor deposition (MPCVD) method has been studied. The average growth rate was about 16–17 μm/h during 48 hours’ growth. The surface morphologies of the as-grown diamond layer were observed. It was foun...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiwei, Duan, Peng, Cao, Zhenzhong, Liu, Changjiang, Wang, Dufu, Peng, Yan, Xu, Xiangang, Hu, Xiaobo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981487/
https://www.ncbi.nlm.nih.gov/pubmed/31878025
http://dx.doi.org/10.3390/ma13010091
Descripción
Sumario:The diamond mosaic grown on the single-crystal diamond substrates by the microwave plasma chemical vapor deposition (MPCVD) method has been studied. The average growth rate was about 16–17 μm/h during 48 hours’ growth. The surface morphologies of the as-grown diamond layer were observed. It was found that the step flow was able to move across the substrates and cover the junction interface. Raman spectroscopic mapping in the central area of the junction revealed the high stress region movement across the junction interface from one substrate to the other for about 200–400 μm. High-resolution X-ray diffractometry (HRXRD) results proved that the surface step flow movement direction had nothing to do with the off-axis directions of the original substrates. It was found that the surface height difference of substrate was the main driving force for the step flow movement, junction combination and surface morphology changing. The mechanism of the mosaic interface junction combination and step flow transformation on the mosaic surface was proposed.