Cargando…
TEMPO-Nanocellulose/Ca(2+) Hydrogels: Ibuprofen Drug Diffusion and In Vitro Cytocompatibility
Stable hydrogels with tunable rheological properties were prepared by adding Ca(2+) ions to aqueous dispersions of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-oxidized and ultra-sonicated cellulose nanofibers (TOUS-CNFs). The gelation occurred by interaction among polyvalent cations and the carboxy...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981511/ https://www.ncbi.nlm.nih.gov/pubmed/31906423 http://dx.doi.org/10.3390/ma13010183 |
Sumario: | Stable hydrogels with tunable rheological properties were prepared by adding Ca(2+) ions to aqueous dispersions of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-oxidized and ultra-sonicated cellulose nanofibers (TOUS-CNFs). The gelation occurred by interaction among polyvalent cations and the carboxylic units introduced on TOUS-CNFs during the oxidation process. Both dynamic viscosity values and pseudoplastic rheological behaviour increased by increasing the Ca(2+) concentration, confirming the cross-linking action of the bivalent cation. The hydrogels were proved to be suitable controlled release systems by measuring the diffusion coefficient of a drug model (ibuprofen, IB) by high-resolution magic angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy. IB was used both as free molecule and as a 1:1 pre-formed complex with β-cyclodextrin (IB/β-CD), showing in this latter case a lower diffusion coefficient. Finally, the cytocompatibility of the TOUS-CNFs/Ca(2+) hydrogels was demonstrated in vitro by indirect and direct tests conducted on a L929 murine fibroblast cell line, achieving a percentage number of viable cells after 7 days higher than 70%. |
---|