Cargando…
Increased Adenine Nucleotide Degradation in Skeletal Muscle Atrophy
Adenine nucleotides (AdNs: ATP, ADP, AMP) are essential biological compounds that facilitate many necessary cellular processes by providing chemical energy, mediating intracellular signaling, and regulating protein metabolism and solubilization. A dramatic reduction in total AdNs is observed in atro...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981514/ https://www.ncbi.nlm.nih.gov/pubmed/31877712 http://dx.doi.org/10.3390/ijms21010088 |
_version_ | 1783491098716405760 |
---|---|
author | Miller, Spencer G. Hafen, Paul S. Brault, Jeffrey J. |
author_facet | Miller, Spencer G. Hafen, Paul S. Brault, Jeffrey J. |
author_sort | Miller, Spencer G. |
collection | PubMed |
description | Adenine nucleotides (AdNs: ATP, ADP, AMP) are essential biological compounds that facilitate many necessary cellular processes by providing chemical energy, mediating intracellular signaling, and regulating protein metabolism and solubilization. A dramatic reduction in total AdNs is observed in atrophic skeletal muscle across numerous disease states and conditions, such as cancer, diabetes, chronic kidney disease, heart failure, COPD, sepsis, muscular dystrophy, denervation, disuse, and sarcopenia. The reduced AdNs in atrophic skeletal muscle are accompanied by increased expression/activities of AdN degrading enzymes and the accumulation of degradation products (IMP, hypoxanthine, xanthine, uric acid), suggesting that the lower AdN content is largely the result of increased nucleotide degradation. Furthermore, this characteristic decrease of AdNs suggests that increased nucleotide degradation contributes to the general pathophysiology of skeletal muscle atrophy. In view of the numerous energetic, and non-energetic, roles of AdNs in skeletal muscle, investigations into the physiological consequences of AdN degradation may provide valuable insight into the mechanisms of muscle atrophy. |
format | Online Article Text |
id | pubmed-6981514 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69815142020-02-03 Increased Adenine Nucleotide Degradation in Skeletal Muscle Atrophy Miller, Spencer G. Hafen, Paul S. Brault, Jeffrey J. Int J Mol Sci Review Adenine nucleotides (AdNs: ATP, ADP, AMP) are essential biological compounds that facilitate many necessary cellular processes by providing chemical energy, mediating intracellular signaling, and regulating protein metabolism and solubilization. A dramatic reduction in total AdNs is observed in atrophic skeletal muscle across numerous disease states and conditions, such as cancer, diabetes, chronic kidney disease, heart failure, COPD, sepsis, muscular dystrophy, denervation, disuse, and sarcopenia. The reduced AdNs in atrophic skeletal muscle are accompanied by increased expression/activities of AdN degrading enzymes and the accumulation of degradation products (IMP, hypoxanthine, xanthine, uric acid), suggesting that the lower AdN content is largely the result of increased nucleotide degradation. Furthermore, this characteristic decrease of AdNs suggests that increased nucleotide degradation contributes to the general pathophysiology of skeletal muscle atrophy. In view of the numerous energetic, and non-energetic, roles of AdNs in skeletal muscle, investigations into the physiological consequences of AdN degradation may provide valuable insight into the mechanisms of muscle atrophy. MDPI 2019-12-21 /pmc/articles/PMC6981514/ /pubmed/31877712 http://dx.doi.org/10.3390/ijms21010088 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Miller, Spencer G. Hafen, Paul S. Brault, Jeffrey J. Increased Adenine Nucleotide Degradation in Skeletal Muscle Atrophy |
title | Increased Adenine Nucleotide Degradation in Skeletal Muscle Atrophy |
title_full | Increased Adenine Nucleotide Degradation in Skeletal Muscle Atrophy |
title_fullStr | Increased Adenine Nucleotide Degradation in Skeletal Muscle Atrophy |
title_full_unstemmed | Increased Adenine Nucleotide Degradation in Skeletal Muscle Atrophy |
title_short | Increased Adenine Nucleotide Degradation in Skeletal Muscle Atrophy |
title_sort | increased adenine nucleotide degradation in skeletal muscle atrophy |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981514/ https://www.ncbi.nlm.nih.gov/pubmed/31877712 http://dx.doi.org/10.3390/ijms21010088 |
work_keys_str_mv | AT millerspencerg increasedadeninenucleotidedegradationinskeletalmuscleatrophy AT hafenpauls increasedadeninenucleotidedegradationinskeletalmuscleatrophy AT braultjeffreyj increasedadeninenucleotidedegradationinskeletalmuscleatrophy |