Cargando…
Application of Machine Learning to Predict Grain Boundary Embrittlement in Metals by Combining Bonding-Breaking and Atomic Size Effects
The strengthening energy or embrittling potency of an alloying element is a fundamental energetics of the grain boundary (GB) embrittlement that control the mechanical properties of metallic materials. A data-driven machine learning approach has recently been used to develop prediction models to unc...
Autores principales: | Wu, Xuebang, Wang, Yu-xuan, He, Kan-ni, Li, Xiangyan, Liu, Wei, Zhang, Yange, Xu, Yichun, Liu, Changsong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981756/ https://www.ncbi.nlm.nih.gov/pubmed/31906401 http://dx.doi.org/10.3390/ma13010179 |
Ejemplares similares
-
Investigation of the dissolution and diffusion properties of interstitial oxygen at grain boundaries in body-centered-cubic iron by the first-principles study
por: Liu, Zhijie, et al.
Publicado: (2021) -
Role of disordered bipolar complexions on the sulfur embrittlement of nickel general grain boundaries
por: Hu, Tao, et al.
Publicado: (2018) -
Toward a better understanding of the enhancing/embrittling effects of impurities in Nickel grain boundaries
por: Bentria, El Tayeb, et al.
Publicado: (2019) -
Study on the Hydrogen Embrittlement of Nanograined Materials with Different Grain Sizes by Atomistic Simulation
por: Li, Jiaqing, et al.
Publicado: (2022) -
Energetic and kinetic dataset on interaction of the vacancy and self-interstitial atom with the grain boundary in α-iron
por: Li, Xiangyan, et al.
Publicado: (2016)