Cargando…

Anisotropic Grain Growth in (111) Nanotwinned Cu Films by DC Electrodeposition

We have reported a method of fabricating (111)-orientated nanotwinned copper (nt-Cu) by direct current electroplating. X-ray analysis was performed for the samples annealed at 200 to 350 °C for an hour. X-ray diffraction indicates that the (200) signal intensity increases while (111) decreases. Abno...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Tien-Lin, Shen, Yu-An, Wu, John A., Chen, Chih
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981876/
https://www.ncbi.nlm.nih.gov/pubmed/31905613
http://dx.doi.org/10.3390/ma13010134
Descripción
Sumario:We have reported a method of fabricating (111)-orientated nanotwinned copper (nt-Cu) by direct current electroplating. X-ray analysis was performed for the samples annealed at 200 to 350 °C for an hour. X-ray diffraction indicates that the (200) signal intensity increases while (111) decreases. Abnormal grain growth normally results from transformation of surface energy or strain energy density. The average grain size increased from 3.8 µm for the as-deposited Cu films to 65–70 µm after the annealing at 250 °C for 1 h. For comparison, no significant grain growth behavior was observed by random Cu film after annealing for an hour. This research shows the potential for its broad electric application in interconnects and three-dimensional integrated circuit (3D IC) packaging.