Cargando…

Non-Coding RNAs Participate in the Regulation of CRY-DASH in the Growth and Early Development of Saccharina japonica (Laminariales, Phaeophyceae)

CRY-DASH, a new cryptochrome blue light receptor, can repair damaged DNA and regulate secondary metabolism and development of fungus. However, its role in regulation during the growth of Saccharina japonica is still unclear. After cloning the full-length of CRY-DASH from S. japonica (sjCRY-DASH), we...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xiaoqi, Li, Lu, Wang, Xiuliang, Yao, Jianting, Duan, Delin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981881/
https://www.ncbi.nlm.nih.gov/pubmed/31906436
http://dx.doi.org/10.3390/ijms21010309
Descripción
Sumario:CRY-DASH, a new cryptochrome blue light receptor, can repair damaged DNA and regulate secondary metabolism and development of fungus. However, its role in regulation during the growth of Saccharina japonica is still unclear. After cloning the full-length of CRY-DASH from S. japonica (sjCRY-DASH), we deduced that its open reading frame was 1779 bp long and encoded 592 amino acids. sjCRY-DASH transcription was rapidly upregulated within 30 min in response to blue light and exhibited 24 h periodicity with different photoperiods. Moreover, sjCRY-DASH maintained the same periodicity in suitable growth temperature, suggesting a close relationship between this periodicity and circadian rhythm regulation. Novel-m3234-5p, which was targeted to sjCRY-DASH, decreased with increasing sjCRY-DASH transcription, acting as a negative modulator of sjCRY-DASH. Six long non-coding RNAs classified as long intergenic non-coding RNAs (lincRNAs) exhibited co-expression with sjCRY-DASH. A miRNA sjCRY DASH lincRNA network was consequently identified. By predicting the endogenous competing mRNAs of novel-m3234-5p, we found that sjCRY-DASH indirectly participated in the regulation of DNA damage repair, protein synthesis and processing, and actin transport. In conclusion, our results revealed that non-coding RNAs participate in the regulation of sjCRY-DASH, which played vital roles in the growth and early development of S. japonica.