Cargando…
Comparative Transcriptomics Provides Insight into Floral Color Polymorphism in a Pleione limprichtii Orchid Population
Floral color polymorphism can provide great insight into species evolution from a genetic and ecological standpoint. Color variations between species are often mediated by pollinators and are fixed characteristics, indicating their relevance to adaptive evolution, especially between plants within a...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982098/ https://www.ncbi.nlm.nih.gov/pubmed/31905846 http://dx.doi.org/10.3390/ijms21010247 |
_version_ | 1783491237034065920 |
---|---|
author | Zhang, Yiyi Zhou, Tinghong Dai, Zhongwu Dai, Xiaoyu Li, Wei Cao, Mengxia Li, Chengru Tsai, Wen-Chieh Wu, Xiaoqian Zhai, Junwen Liu, Zhongjian Wu, Shasha |
author_facet | Zhang, Yiyi Zhou, Tinghong Dai, Zhongwu Dai, Xiaoyu Li, Wei Cao, Mengxia Li, Chengru Tsai, Wen-Chieh Wu, Xiaoqian Zhai, Junwen Liu, Zhongjian Wu, Shasha |
author_sort | Zhang, Yiyi |
collection | PubMed |
description | Floral color polymorphism can provide great insight into species evolution from a genetic and ecological standpoint. Color variations between species are often mediated by pollinators and are fixed characteristics, indicating their relevance to adaptive evolution, especially between plants within a single population or between similar species. The orchid genus Pleione has a wide variety of flower colors, from violet, rose-purple, pink, to white, but their color formation and its evolutionary mechanism are unclear. Here, we selected the P. limprichtii population in Huanglong, Sichuan Province, China, which displayed three color variations: Rose-purple, pink, and white, providing ideal material for exploring color variations with regard to species evolution. We investigated the distribution pattern of the different color morphs. The ratio of rose-purple:pink:white-flowered individuals was close to 6:3:1. We inferred that the distribution pattern may serve as a reproductive strategy to maintain the population size. Metabolome analysis was used to reveal that cyanindin derivatives and delphidin are the main color pigments involved. RNA sequencing was used to characterize anthocyanin biosynthetic pathway-related genes and reveal different color formation pathways and transcription factors in order to identify differentially-expressed genes and explore their relationship with color formation. In addition, qRT-PCR was used to validate the expression patterns of some of the genes. The results show that PlFLS serves as a crucial gene that contributes to white color formation and that PlANS and PlUFGT are related to the accumulation of anthocyanin which is responsible for color intensity, especially in pigmented flowers. Phylogenetic and co-expression analyses also identified a R2R3-MYB gene PlMYB10, which is predicted to combine with PlbHLH20 or PlbHLH26 along with PlWD40-1 to form an MBW protein complex (MYB, bHLH, and WDR) that regulates PlFLS expression and may serve as a repressor of anthocyanin accumulation-controlled color variations. Our results not only explain the molecular mechanism of color variation in P. limprichtii, but also contribute to the exploration of a flower color evolutionary model in Pleione, as well as other flowering plants. |
format | Online Article Text |
id | pubmed-6982098 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69820982020-02-07 Comparative Transcriptomics Provides Insight into Floral Color Polymorphism in a Pleione limprichtii Orchid Population Zhang, Yiyi Zhou, Tinghong Dai, Zhongwu Dai, Xiaoyu Li, Wei Cao, Mengxia Li, Chengru Tsai, Wen-Chieh Wu, Xiaoqian Zhai, Junwen Liu, Zhongjian Wu, Shasha Int J Mol Sci Article Floral color polymorphism can provide great insight into species evolution from a genetic and ecological standpoint. Color variations between species are often mediated by pollinators and are fixed characteristics, indicating their relevance to adaptive evolution, especially between plants within a single population or between similar species. The orchid genus Pleione has a wide variety of flower colors, from violet, rose-purple, pink, to white, but their color formation and its evolutionary mechanism are unclear. Here, we selected the P. limprichtii population in Huanglong, Sichuan Province, China, which displayed three color variations: Rose-purple, pink, and white, providing ideal material for exploring color variations with regard to species evolution. We investigated the distribution pattern of the different color morphs. The ratio of rose-purple:pink:white-flowered individuals was close to 6:3:1. We inferred that the distribution pattern may serve as a reproductive strategy to maintain the population size. Metabolome analysis was used to reveal that cyanindin derivatives and delphidin are the main color pigments involved. RNA sequencing was used to characterize anthocyanin biosynthetic pathway-related genes and reveal different color formation pathways and transcription factors in order to identify differentially-expressed genes and explore their relationship with color formation. In addition, qRT-PCR was used to validate the expression patterns of some of the genes. The results show that PlFLS serves as a crucial gene that contributes to white color formation and that PlANS and PlUFGT are related to the accumulation of anthocyanin which is responsible for color intensity, especially in pigmented flowers. Phylogenetic and co-expression analyses also identified a R2R3-MYB gene PlMYB10, which is predicted to combine with PlbHLH20 or PlbHLH26 along with PlWD40-1 to form an MBW protein complex (MYB, bHLH, and WDR) that regulates PlFLS expression and may serve as a repressor of anthocyanin accumulation-controlled color variations. Our results not only explain the molecular mechanism of color variation in P. limprichtii, but also contribute to the exploration of a flower color evolutionary model in Pleione, as well as other flowering plants. MDPI 2019-12-30 /pmc/articles/PMC6982098/ /pubmed/31905846 http://dx.doi.org/10.3390/ijms21010247 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Yiyi Zhou, Tinghong Dai, Zhongwu Dai, Xiaoyu Li, Wei Cao, Mengxia Li, Chengru Tsai, Wen-Chieh Wu, Xiaoqian Zhai, Junwen Liu, Zhongjian Wu, Shasha Comparative Transcriptomics Provides Insight into Floral Color Polymorphism in a Pleione limprichtii Orchid Population |
title | Comparative Transcriptomics Provides Insight into Floral Color Polymorphism in a Pleione limprichtii Orchid Population |
title_full | Comparative Transcriptomics Provides Insight into Floral Color Polymorphism in a Pleione limprichtii Orchid Population |
title_fullStr | Comparative Transcriptomics Provides Insight into Floral Color Polymorphism in a Pleione limprichtii Orchid Population |
title_full_unstemmed | Comparative Transcriptomics Provides Insight into Floral Color Polymorphism in a Pleione limprichtii Orchid Population |
title_short | Comparative Transcriptomics Provides Insight into Floral Color Polymorphism in a Pleione limprichtii Orchid Population |
title_sort | comparative transcriptomics provides insight into floral color polymorphism in a pleione limprichtii orchid population |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982098/ https://www.ncbi.nlm.nih.gov/pubmed/31905846 http://dx.doi.org/10.3390/ijms21010247 |
work_keys_str_mv | AT zhangyiyi comparativetranscriptomicsprovidesinsightintofloralcolorpolymorphisminapleionelimprichtiiorchidpopulation AT zhoutinghong comparativetranscriptomicsprovidesinsightintofloralcolorpolymorphisminapleionelimprichtiiorchidpopulation AT daizhongwu comparativetranscriptomicsprovidesinsightintofloralcolorpolymorphisminapleionelimprichtiiorchidpopulation AT daixiaoyu comparativetranscriptomicsprovidesinsightintofloralcolorpolymorphisminapleionelimprichtiiorchidpopulation AT liwei comparativetranscriptomicsprovidesinsightintofloralcolorpolymorphisminapleionelimprichtiiorchidpopulation AT caomengxia comparativetranscriptomicsprovidesinsightintofloralcolorpolymorphisminapleionelimprichtiiorchidpopulation AT lichengru comparativetranscriptomicsprovidesinsightintofloralcolorpolymorphisminapleionelimprichtiiorchidpopulation AT tsaiwenchieh comparativetranscriptomicsprovidesinsightintofloralcolorpolymorphisminapleionelimprichtiiorchidpopulation AT wuxiaoqian comparativetranscriptomicsprovidesinsightintofloralcolorpolymorphisminapleionelimprichtiiorchidpopulation AT zhaijunwen comparativetranscriptomicsprovidesinsightintofloralcolorpolymorphisminapleionelimprichtiiorchidpopulation AT liuzhongjian comparativetranscriptomicsprovidesinsightintofloralcolorpolymorphisminapleionelimprichtiiorchidpopulation AT wushasha comparativetranscriptomicsprovidesinsightintofloralcolorpolymorphisminapleionelimprichtiiorchidpopulation |