Cargando…
On the Fracture Behavior of a Creep Resistant 10% Cr Steel with High Boron and Low Nitrogen Contents at Low Temperatures
An advanced, high chromium, creep-resistant steel was subjected to the tensile tests and three-point bending tests of Charpy V-notch specimens at temperatures of −196 to 20 °C. The steel exhibited ductile fracture under tension tests at all of the temperatures studied. The mechanical properties, i.e...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982194/ https://www.ncbi.nlm.nih.gov/pubmed/31861335 http://dx.doi.org/10.3390/ma13010003 |
Sumario: | An advanced, high chromium, creep-resistant steel was subjected to the tensile tests and three-point bending tests of Charpy V-notch specimens at temperatures of −196 to 20 °C. The steel exhibited ductile fracture under tension tests at all of the temperatures studied. The mechanical properties, i.e., strength and uniform elongation, were enhanced with a decrease in temperature down to −140 °C. Transgranular, dimpled fracture remained the primary fracture mechanism under tension. On the other hand, the results obtained with Charpy V-notch specimens suggested the ductile–brittle transition (DBT). Full embrittlement was observed at temperatures of −60 °C and −150 °C upon impact tests and three-point bending tests, respectively, when the unstable crack started to propagate without remarkable plastic deformation. The DBT temperature of −27 °C for the present steel corresponded to the 28 J impact transition temperature, T(28J), when the maximum impact stress matched the maximal true tensile stress. |
---|